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Abstract 

Cognitive training interventions have become increasingly popular as a potential means to cost-

efficiently stabilize or enhance cognitive functioning across the lifespan. Large training 

improvements have been consistently reported on the group level, with, however, large 

differences on the individual level. Identifying the factors contributing to these individual 

differences could allow for developing individually-tailored interventions to boost training gains. 

In this study, we therefore examined a range of individual differences variables that had been 

discussed in the literature to potentially predict training performance. To estimate and predict 

individual differences in the training trajectories, we applied Latent Growth Curve models to 

existing data from three working memory training interventions with younger and older adults. 

However, we found that individual differences in demographic variables, real-world cognition, 

motivation, cognition-related beliefs, personality, leisure activities, and computer literacy and 

training experience were largely unrelated to change in training performance. Solely baseline 

cognitive performance was substantially related to change in training performance and 

particularly so in young adults, with individuals with higher baseline performance showing the 

largest gains. Thus, our results conform to magnification accounts of cognitive change.  

Keywords: working memory training, individual differences, latent growth curve 

modeling 
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Do Individual Differences Predict Change in Cognitive Performance? A Latent Growth Curve 

Modeling Approach 

 

Over the past decade, there has been an exploding interest in computer-based commercial 

“brain training” programs and in scientific evidence relating to the effectiveness of such 

interventions, triggered by promising results of working memory (WM) training gains 

generalizing to previously untrained cognitive abilities such as intelligence in both younger (e.g., 

Jaeggi, Buschkuehl, Jonides, & Perrig, 2008) and older adults (e.g., Borella, Carretti, Riboldi, & 

De Beni, 2010). Although the idea of improving general cognitive functioning within a few 

weeks is enticing, there is also accumulating evidence against a generalized effect of WM 

training (e.g., Clark, Lawlor-Savage, & Goghari, 2017; De Simoni & von Bastian, 2017; Guye & 

von Bastian, 2017; Sprenger et al., 2013). Even on the meta-analytic level, evidence is mixed 

regarding the effectiveness of cognitive training in both younger and older adults (e.g., Au et al., 

2015; Dougherty, Hamovitz, & Tidwell, 2016; Karbach & Verhaeghen, 2014; Kelly et al., 2014; 

Lampit, Hallock, & Valenzuela, 2014; Melby-Lervåg & Hulme, 2013; Melby-Lervåg, Redick, & 

Hulme, 2016; Schwaighofer, Fischer, & Bühner, 2015; Soveri, Antfolk, Karlsson, Salo, & Laine, 

2017). Aside from design and methodological choices potentially explaining the diverging 

findings (e.g., Noack, Lövdén, Schmiedek, & Lindenberger, 2009; Shipstead, Redick, & Engle, 

2012), many authors increasingly articulated the potentially important influence of individual 

differences on cognitive training trajectories and outcomes (e.g., Buitenweg, Murre, & 

Ridderinkhof, 2012; Guye, Röcke, Mérillat, von Bastian, & Martin, 2016; Könen & Karbach, 

2015; Shah, Buschkuehl, Jaeggi, & Jonides, 2012; von Bastian & Oberauer, 2014) 

Individual differences in cognitive functioning (e.g., Ackerman & Lohman, 2006) and 

learning potential (e.g., Stern, 2017) accentuate with increasing age (e.g., Rabbitt, Diggle, 
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Holland, & McInnes, 2004), and have been shown to be related to personality (e.g., Graham & 

Lachman, 2012), cognition-related beliefs such as need for cognition (NFC; e.g., Fleischhauer et 

al., 2010; Hill et al., 2013), and everyday life activities (e.g., Jopp & Hertzog, 2007). 

Investigating which of these individual differences potentially predict cognitive training 

outcomes may not only explain inconsistencies concerning the effectiveness of cognitive 

training, but also identify possible subgroups of individuals that are more or less responsive to 

cognitive training, thereby constituting the conceptual groundwork for developing individually-

tailored interventions to boost training effectiveness. 

Predictors of Cognitive Training Outcomes  

  As yet, only few studies have examined how individual differences are associated with 

cognitive training outcomes (see Katz, Jones, Shah, Buschkuehl, & Jaeggi, 2016 for an 

overview), with most existing studies relating training outcomes to demographic variables (e.g., 

age), baseline cognitive performance, motivation, cognition-related beliefs (e.g., theories of 

intelligence; TIS) and personality traits (e.g., neuroticism and conscientiousness).  

  So far, the effect of age on training outcomes has received the most attention. Age-

comparative studies mostly reported larger training effects in younger than in older adults (e.g., 

Brehmer, Westerberg, & Bäckman, 2012; Bürki, Ludwig, Chicherio, & de Ribaupierre, 2014; 

Schmiedek, Lövdén, & Lindenberger, 2010; von Bastian, Langer, Jäncke, & Oberauer, 2013), 

and in young-old adults compared to old-old adults (e.g., Borella et al., 2014; Zinke et al., 2014). 

These results are in line with the notion of a magnification effect (also known as amplification or 

Matthew effect; Kliegl, Smith, & Baltes, 1990; Lövdén, Brehmer, Li, & Lindenberger, 2012; 

Verhaeghen & Marcoen, 1996), suggesting that younger individuals benefit more from cognitive 

training, as they have the additional cognitive resources available required for successfully 
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completing the training tasks. However, other studies found that children and older adults 

benefited more from training than young adults (e.g., Bherer et al., 2008; Karbach & Kray, 

2009). Such compensation effects have been argued to emerge as participants with lower initial 

cognitive status have more room for improvement (see Titz & Karbach, 2014 for a review). 

These diverging findings are reflected by recent meta-analyses, with some reporting evidence for 

age being a moderator of training outcomes (e.g., Melby-Lervåg & Hulme, 2013) and others not 

(e.g., Karbach & Verhaeghen, 2014; Schwaighofer et al., 2015). A closely related, yet potentially 

distinct factor possibly contributing to these mixed findings is general cognitive functioning (von 

Bastian & Oberauer, 2014). Only few studies have directly assessed the effect of baseline 

cognitive performance on training outcomes though, with some evidence suggesting that initially 

low-performing individuals benefit more from training (e.g., Jaeggi et al., 2008; Zinke et al., 

2014), but others reported opposite effects (e.g., Bürki et al., 2014).  

  Although motivation is arguably one of the most plausible factors possibly influencing 

cognitive training outcomes, its association with training performance has not yet been 

comprehensively examined. One exception is a study by Brose, Schmiedek, Lövdén, and 

Lindenberger (2012), who reported a positive association between daily motivation and daily 

cognitive performance on a 3-back task, indicating that on days on which task-related motivation 

was lower than on average, daily cognitive performance was also reduced. Some studies have 

investigated the effect of related concepts, including cognition-related beliefs such as 

individuals’ beliefs about the malleability of intelligence (TIS; Dweck, 2000). For instance, 

Jaeggi, Buschkuehl, Shah, and Jonides (2014) found that, irrespective of training intervention 

(control or experimental intervention), the group of individuals indicating high beliefs in the 

malleability of intelligence (a “growth mindset”) showed larger transfer effects than the group of 
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individuals who believed that intelligence cannot be changed (but see Thompson et al., 2013). 

Due to the fact that the groups were determined by median split, these results should, however, 

be interpreted with caution, as median split and extreme group analyses can potentially inflate 

the effect sizes and consequently overestimate the importance of a given effect (Moreau, Kirk, & 

Waldie, 2016; Unsworth et al., 2015). Indeed, other studies have not found an association of 

cognition-related beliefs with training outcomes (Minear et al., 2016; Sprenger et al., 2013).  

  Finally, there is some evidence for personality traits being related to training outcomes. It 

has been reported that conscientiousness is positively related to training performance, but 

negatively to far transfer effects (Studer-Luethi, Jaeggi, Buschkuehl, & Perrig, 2012). Further, 

neuroticism has been found to be negatively associated with mean training performance (but not 

training gain; Studer-Luethi, Bauer, & Perrig, 2016; Studer-Luethi et al., 2012) and transfer 

effects (Studer-Luethi et al., 2012; 2016; see also Urbánek & Marček, 2015 for similar results 

using the Personality System Interaction personality factors), except when training task 

complexity is low (Studer-Luethi et al., 2012). 

  In sum, there is some tentative evidence that individual differences may predict training 

performance and transfer effects. Studies attempting to estimate the role of individual differences 

based on sufficiently large training samples and continuous predictors are, however, scarce. 

Further, some individual differences have been entirely neglected, including cognitive 

performance in real-world context (e.g., education), training-related leisure activities (e.g., 

gaming), and computer literacy or previous training experience. 

The Present Study 

The goal of this study was to enhance the understanding of who benefits from cognitive 

training and who does not. Using Latent Growth Curve (LGC) modeling, we therefore examined 
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(1) the individual cognitive training trajectories, (2) the association of baseline cognitive 

performance with change in training performance, and (3) which individual differences predicted 

change in training performance.  

We reanalyzed three data sets obtained from two randomized-controlled, double-blind 

WM training studies investigating two WM interventions in younger (De Simoni & von Bastian, 

2017) and one in older adults (Guye & von Bastian, 2017). Observed improvements in the 

trained tasks were substantial in size and in line with numerous studies consistently reporting 

training effects across a wide variety of training regimes and trained abilities (e.g., Karbach & 

Verhaeghen, 2014). The two training studies were similar regarding the included questionnaires 

assessing individual differences potentially predicting training performance, and the training 

regimen itself (i.e., trained tasks, training duration, frequency, adaptive task difficulty, and nature 

of the control group). In the first study (De Simoni & von Bastian, 2017), younger adults 

received either of two single-paradigm WM training interventions (i.e., memory updating and 

binding training). In the second study (Guye & von Bastian, 2017), older adults received a 

mixed-paradigm WM training intervention, consisting of a memory updating, a binding, and a 

complex span task. All three interventions were adaptive, with the level of difficulty increasing 

depending on individuals’ performance.  

To estimate the training trajectories, we fitted LGC models to the data recorded during 

training. LGC modeling uses structural equation modeling (SEM) to estimate interindividual 

differences in intraindividual change over time. LGC modeling is highly flexible as it can handle 

a variety of methodological issues typically occurring in training research such as partially 

missing data, non-normally distributed data, or non-linear change trajectories (Curran, Obeidat, 

& Losardo, 2010). Further, LGC modeling has the advantage to account for measurement error 
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and to provide separate latent estimates for baseline cognitive performance (i.e., the intercept) 

and change in training performance (i.e., the slope). The distinction between the two latent 

factors allows for estimating how baseline cognitive performance is related to change in 

performance, with a positive relationship reflecting magnification, and a negative relationship 

reflecting compensation effects. Further, to investigate how the individual differences variables 

are associated with the intercept and the slope, we extended the LGC models by predicting the 

variance in baseline cognitive performance and, more importantly, change in training 

performance by (1) demographic variables, (2) real-world cognition, (3) motivation, (4) 

cognition-related beliefs, (5) personality, (6) leisure activities, and (7) computer literacy and 

training experience.  

Statistical evidence for the predictive value of baseline cognitive performance and each of 

the individual differences variables was evaluated using Bayes factors (BF). The BF is a 

statistical index ranging from 0 to infinity and quantifies the strength of evidence for one 

hypothesis (usually the alternative hypothesis H1, postulating the presence of an association) 

compared to another hypothesis (usually the null hypothesis H0, postulating the absence of an 

association). Hence, BFs allow for evaluating the strength of evidence not only for the presence 

of an association, but explicitly also for the absence of a proposed association. Accordingly, 

using BFs has become increasingly popular in the area of cognitive enhancement (e.g., Antón et 

al., 2014; Clark, Lawlor-Savage, & Goghari, 2017; De Simoni & von Bastian, 2017; Guye & von 

Bastian, 2017; Kirk, Fiala, Scott-Brown, & Kempe, 2014; Paap, Johnson, & Sawi, 2014; 

Sprenger et al., 2013; von Bastian, Guye, & De Simoni, 2017; von Bastian & Oberauer, 2013).  

Based on previous findings, we expected positive associations of motivation (Brose et al., 

2012), a growth mindset (Jaeggi et al., 2014), and conscientiousness (Studer-Luethi et al., 2012) 
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with change in training performance. Regarding neuroticism, our expectations were less specific, 

given that previous literature reported evidence for a negative association of neuroticism with 

mean training performance and transfer effects, but not with training gains (e.g., Studer-Luethi et 

al., 2012; 2016). Based on the results by Bürki et al. (2014), methodologically the most similar 

study to our own, we expected a negative association of age and a positive association of 

baseline cognitive performance with change in cognitive performance, which would support the 

magnification hypothesis. For all the other individual differences variables, the analyses were 

exploratory.  

Method 

 Detailed methods regarding the training interventions have been reported previously (De 

Simoni & von Bastian, 2017; Guye & von Bastian, 2017). In the following, we summarize the 

key characteristics of each study’s methodology with a focus on the individual differences 

measures.  

Participants 

The final sample sizes ranged from 58 to 68 (see Table 1 for detailed sample description). 

The Young-Updating and Young-Binding samples were drawn from a study of healthy younger 

participants aged between 18 – 36 years, and the Old-Mixed sample was drawn from a study of 

healthy older participants aged between 65 – 80 years. Younger participants were recruited 

through the participant pool of the Department of Psychology of the University of Zurich, 

postings at the university campus, and short study presentations during lectures. Older 

participants were recruited through the participant pool of the University Research Priority 

Program “Dynamics of Healthy Aging”, lectures at the Senior Citizens’ University of Zurich, 

flyers, online announcements, and word-of-mouth. All participants were fluent or native German 
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speakers and had a computer with Internet connection at home. Written informed consent was 

obtained from all participants. Both studies were approved by the ethics committee of the 

Department of Psychology of the University of Zurich. After study completion, younger 

participants received either CHF 120 (approx. USD 120) or CHF 20 (USD 20) plus 10 course 

credits, moreover, they could earn a bonus up to a maximum of 50 CHF (USD 50), depending on 

the level of difficulty that they reached during training. Older participants received CHF 150 

(approx. USD 150). 

Younger participants reported no current psychiatric or neurological disorders, 

psychotropic drug use, or color blindness. Older participants also reported no current psychiatric 

or neurological disorders, psychotropic drug use, and no significant motor, hearing or vision 

impairments. Further, they were screened for color blindness (Ishihara, 1917), subclinical 

depression (GDS; Sheikh & Yesavage, 1986: cut-off criterion = 4), and cognitive impairment 

(MMSE; Folstein, Folstein, & McHugh, 1975: cut-off criterion = 26).  
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Table 1 

Demographics of Study Participants  

 Sample 

Demographics Young-Updating Young-Binding Old-Mixed 

Sample size (n) 58 64 68 

Intervention Memory updating Binding Mixed-paradigm 

Age  22.57 (2.99) 24.77 (4.03) 70.40 (3.72) 

Gender (f/m) 39/19 45/19 30/38 

Education a 5 (0.00) 5 (0.00) 5 (1.48) 

MMSE score - - 29.21 (0.76) 

GDS score - - 0.65 (1.02) 

Note. Values are means and standard deviations in parentheses (median and median 

absolute deviation in parentheses for education).  

a The scale for education ranged from 0 (no formal education) to 7 (doctorate).  

 

Studies and Material 

 Cognitive training interventions. Training procedures were identical for the three 

samples if not mentioned otherwise. Tatool was used to deliver the self-administered training 

interventions at home and to monitor participants’ training compliance (von Bastian, Locher, & 

Ruflin, 2013). The default adaptive score and level handler implemented in Tatool was used to 

adjust task difficulty to participants’ performance throughout the training phase. Both the set size 

(i.e., number of memoranda) and the response time limit varied depending on the level of task 

difficulty (see below). Younger participants completed 20 sessions of WM training (30-45 

minutes per session) within five weeks. Each training session consisted of 12 trials per task in the 

Young-Updating sample and 24 trials per task in the Young-Binding sample. Interventions 

comprised verbal, spatial, visual, and numerical memory updating tasks (Young-Updating 
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sample) and verbal, spatial, visual, and numerical binding tasks (Young-Binding sample). Both 

younger samples trained each task for a maximum of 11.25 min per session. Older participants 

completed 25 sessions of WM training (30-45 minutes per session) within five weeks, with the 

intervention consisting of a complex span, a binding, and a memory updating task each of which 

contained visuo-spatial memoranda. Each task was trained for a maximum of 15 min per session, 

with each session consisting of 15 trials per task. Set size achieved at the end of each session and 

task was used as the dependent variable. Table 2 lists an overview of the training tasks.  
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Table 2 

Working Memory Training Tasks of the Training Interventions 

Task(-version) Description 

Memory updating training 

Arrows Memorize a set of arrows and update by rotating them for 45 degrees 

clockwise or counterclockwise. 

Letters Memorize a set of letters and update by mentally shifting them up to three 

positions forward or backward in the alphabet.  

Locations Memorize the locations of a set of circles in a grid and update by mentally 

shifting them to an adjacent cell as indicated by an arrow. 

Digits Memorize a set of digits and update by applying simple arithmetic 

operations to them. 

Binding training 

Fractal-location Memorize a series of associations between fractals and their location in a 

row of boxes on the grid. 

Noun-verb Memorize a series of associations between nouns and verbs. 

Color-location Memorize a series of associations between colored circles and their 

locations in a 4 x 4 grid. 

Symbol-digit Memorize a series of associations between mathematical symbols and 

digits. 

Mixed-paradigm training 

Memory updating Memorize the locations of a set of circles in a 4 x 4 grid and update by 

mentally shifting them to an adjacent cell. 

Binding Memorize a series of associations between colored triangles and their 

locations in a 4 x 4 grid. 

Complex span Memorize a series of positions of squares in a 5 x 5 grid interleaved by a 

distractor task. 

Note. Detailed description of the tasks can be found in the original publications (De Simoni & 

von Bastian, 2017; Guye & von Bastian, 2017). 
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 Updating training. The Young-Updating sample practiced four memory updating tasks 

(adapted from Lewandowsky, Oberauer, Yang, & Ecker, 2010). In these tasks, participants had 

to memorize a set of stimuli presented simultaneously for 500 ms per item. In the subsequent 

updating phase, participants had to transform individual memoranda (e.g., mentally rotate 

previously memorized arrows or applying a simple arithmetic operation to a number), enter the 

result of the transformation, and remember that result of the transformation. In half of the trials, a 

cue presented for 500 ms indicated which of the memorandum had to be updated. After nine 

updating steps, participants had to recall the most recent result of each stimulus. Task difficulty 

was adjusted to individual performance by increasing the set size (i.e., number of simultaneously 

presented memoranda) and reducing the time limit to respond to the updating prompts.  

Binding training. The Young-Binding sample practiced four binding tasks (adapted from 

Wilhelm, Hildebrandt, & Oberauer, 2013). In these tasks, participants had to remember 

associations between elements (e.g., noun and verbs or objects and their locations in a grid) 

presented sequentially for 900 ms (noun-verb and symbol-digit) or 1800 ms (fractal-location and 

color-location) each. After memorization, each association was probed in random order with one 

of the elements given as cue. Half of the probes were positive (i.e., exact matches), whereas 

negative probes could be distractors (i.e., probes not presented in the current trial; 25 % of 

probes) or intrusions (i.e., probes that were presented in the current trial, but associated with a 

different element; 25 % of probes). Task difficulty was adjusted to individual performance by 

increasing the set size (i.e., number of sequentially presented pairs) and reducing the time limit to 

respond to the probes.  

Mixed-paradigm training. Mixed-paradigm training consisted of a memory updating task 

(adapted from De Simoni & von Bastian, 2017; Schmiedek, Lövdén, & Lindenberger, 2014), a 
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binding task (Oberauer, 2005), and a figural-spatial complex span task (von Bastian & Eschen, 

2016). 

The memory updating task was identical to the locations task practiced by the Young-

Updating sample. Participants first had to memorize the locations of colored circles presented 

simultaneously in a 4 x 4 grid for 500 ms per item. After the presentation of the circles, an arrow 

was presented alongside one of the circles centrally on the screen for 500 ms. The circle had to 

be mentally shifted up, down, left, or right to the adjacent cell as indicated by the arrow. 

Participants indicated the new position of the circle by mouse click in the blank grid. As in the 

Young-Updating Sample updating training, trials comprised nine updating steps, with half of the 

trials using a cue presented for 500 ms to indicate which of the circles had to be updated.  

The binding task was similar to the ones practiced by the Young-Binding sample. 

Participants had to memorize a series of locations of colored triangles in a 4 x 4 grid. Each item 

was presented for 900 ms followed by a 100 ms inter-stimulus interval. During recognition, each 

association was probed by presenting a triangle in a location in the grid, and participants had to 

decide whether it matched the triangle that was previously presented at that position. Across all 

trials, 50 % of the probes were matches, 25 % were distractors, and 25 % were intrusions.  

For the complex span task, participants had to memorize a series of red in a 5 x 5 grid, 

each presented for 1000 ms. Each trial of the series was interleaved by a distractor task, in which 

participants had to decide whether the long side of a L-shaped figure within the grid was oriented 

vertically or horizontally. Response time during the distractor task was limited to 3000 ms. 

During recall, participants had unlimited time to indicate the grid positions in correct serial order 

by mouse-click.  
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In all three tasks, difficulty was adjusted by increasing the set size and reducing the 

response time limit. For the complex span task, time to respond to the distractor task was limited, 

and for the binding and memory updating tasks time to respond during the retrieval phase was 

reduced. 

Adaptive task difficulty. All participants started training on the same level of task 

difficulty. To maximize the time participants were exposed to challenging task demands, we 

ensured that participants quickly reached their individual baseline cognitive performance limit by 

implementing a fast evaluating adaptive algorithm during the first training session. Participants’ 

performance was evaluated after every 10 % of trials in the younger samples, and every 7 % of 

trials in the older sample (corresponding to one trial in the Young-Updating sample and the Old-

Mixed sample, and two trials in the Young-Binding sample). If participants reached a 

performance criterion (i.e., accuracy above 85 % in the younger samples, 80 % in the older 

sample), task difficulty was raised by reducing the response time limit (by 500 ms in the younger 

samples and 300 ms in the older sample) for four subsequent level-ups, or by increasing the set 

size by one additional memorandum every fifth level-up (which also reset the response time limit 

to the starting value). After the first session, performance was evaluated after every 40% of trials 

(corresponding to five trials in the Young-Updating sample, ten trials in the Young-Binding 

sample and six trials in the Old-Mixed sample). The first training session started with a set size 

of two and a response time limit of 3500 ms per response for the younger samples, and 5000 ms 

per response in the older sample. The maximum set size was set to eight in the Young-Updating 

and the Old-Mixed samples and seven in the Young-Binding sample.  

Assessment of individual differences variables. Individual differences variables were 

assessed prior to training, except for motivation, which was assessed at the end of the respective 
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training sessions (see below). Participants completed most computer-based questionnaires at 

home. In addition, older adults completed the following questionnaires during an individual in-

lab assessment at the University of Zurich: a demographic questionnaire, a computer- and 

Internet questionnaire, and an adapted German, multiple-choice version of the Everyday 

Performance Test (EPT; Willis & Marsiske, 1993). Mean rating was used as the dependent 

variable for the questionnaire measures.  

 Demographics. Age and gender were assessed with a demographic questionnaire.  

 Real-world cognition. Education level was assessed on a scale ranging from 0 to 7 (0 = 

no formal education, 7 = doctorate). As younger adults were only included in the study if they 

obtained at least a higher education entrance qualification (corresponding to education level 4), 

variance in this measure was limited. Thus, we refrained from using education level as a 

predictor in younger adults. Older adults additionally completed the Cognitive Failure 

Questionnaire (CFQ; Broadbent, Cooper, FitzGerald, & Parkes, 1982), assessing self-reported 

failures in perception, memory, and motor function. Items such as “Do you find you forget 

people’s names?” were rated on a 5-point scale (0 = never, 4 = very often). Further, we assessed 

older adults’ everyday problem solving abilities using an adapted multiple-choice version of the 

EPT. The EPT is an objective assessment of everyday competence to perform complex tasks of 

daily living. Participants were presented with 15 everyday tasks (e.g., a recipe for twelve 

biscuits) and asked to solve two problems associated with each stimulus (e.g., calculate the 

amount of flour to bake half of the biscuits) by choosing one of four answers. EPT score 

represents the number of correctly solved items within 45 minutes.   

Motivation. In the younger samples, participants’ training motivation was assessed at the 

beginning of and mid-way through training (sessions 1 and 10) using an adapted version of the 
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Questionnaire on Current Motivation (Rheinberg, Vollmeyer, & Bruns, 2001). On a 7-point scale 

(1 = disagree, 7 = agree) they had to rate items such as “I am fully determined to give my best 

during training”. In addition, the younger participants completed an adapted version of the 

Intrinsic Motivation Inventory (IMI; Deci & Ryan, 2016) at the end of the last training session, 

rating items such as “Today’s training session was fun to do” on a 7-point scale (1 = does not 

apply at all, 7 = does apply very well). In the older sample, participants’ training motivation was 

assessed at the beginning of and mid-way through training (sessions 2 and 14) using an adapted 

version the IMI (Deci and Ryan, 2016). Because the motivation measures were highly correlated 

in the younger (all rs ≥ .48, all ps < .001) and older samples (r = .76, p < .001) across time 

points, we computed one single motivation composite score by averaging the z-transformed 

scores.  

Cognition-related beliefs. Beliefs were measured using four different constructs. First, 

we assessed participants’ passion and perseverance for long-term goals using the 12-item Grit 

scale (Duckworth, Peterson, Matthews, & Kelly, 2007). Items such as “I finish whatever I begin” 

were rated on a 5-point scale (1 = not like me at all, 5 = very much like me). Second, we assessed 

the degree to which participants enjoy effortful cognitive activities using the 16-item1 NFC scale 

(Cacioppo & Petty, 1982). Items (e.g., “I really enjoy a task that involves coming up with new 

solutions to problems”) were rated on a 7-point scale (1 = strongly disagree, 7 = strongly agree). 

Third, participants’ implicit beliefs about the malleability of intelligence was assessed using the 

TIS (Dweck, 2000). Items such as “No matter who you are, you can significantly change your 

intelligence level” were rated on a 6-point scale (1 = strongly disagree, 6 = strongly agree). 

Higher levels indicate an incremental view (a “growth mindset”, i.e., viewing intelligence as a 

                                                 
1 In the older sample, the 33-item version was administered. To match the younger samples, we only included the 

16 items from the short version in the present analyses.  
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malleable, changeable construct). Finally, to assess participants’ sense of perceived self-efficacy, 

we administered the General Self-Efficacy scale (GSE; Schwarzer & Jerusalem, 1995). 

Participants rated the items (e.g., “I can always manage to solve difficult problems if I try hard 

enough”) on a 4-point scale (1 = not at all true, 4 = exactly true). Younger adults additionally 

completed an adapted version of the Self-Efficacy to Regulate Exercise scale (EXSE; Bandura, 

2006). Participants rated the items (e.g., “How certain are you that you can get yourself to 

perform your training routine regularly when you have other time commitments”) on a visual 

analogue scale ranging from 1 to 100.2  

Personality. Personality traits were assessed using the 60-item NEO Five Factor 

Inventory (Costa & McCrae, 1992), including subscales for neuroticism, agreeableness, 

openness, conscientiousness, and extraversion. All items were rated on a 5-point scale (0 = 

strongly disagree, 4 = strongly agree).  

Leisure activities. Leisure activities were assessed using an adapted version of the Adult 

Leisure Activity Questionnaire (Jopp & Hertzog, 2010). Items were grouped into 11 activity 

categories (i.e., physical, developmental, and experiential activities, activities with close social 

partners, group-centered public activity, religious activities, crafts, game playing, TV watching, 

travel, and technology use), across which participants indicated how often they partook in these 

activities on a 6-point scale (1 = never, 6 = daily).  

Computer literacy and training experience. Older participants completed a questionnaire 

regarding their computer and Internet experience. Participants were asked “How confident do 

you feel using the computer?” and responded on a 7-point scale (1 = not confident at all, 7 = very 

confident). Further, participants were asked if they had any previous cognitive training 

                                                 
2 As the two measures for self-efficacy were not correlated (r = 0.03, p = .715), we analyzed both measures 

separately rather than computing a composite score.  
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experience (i.e., through commercially available training programs and/or through participating 

in other studies).   

Data Analysis  

We fitted LGC models to the training data (1) to estimate the individual trajectories of 

performance change over time and (2) to investigate the effect of baseline cognitive performance 

on change in training performance, and (3) to identify possible individual differences that predict 

change in training performance. Ideally, all training sessions would have been included 

individually in the models (see also Bürki et al., 2014). However, due to the relatively small 

sample sizes and to increase the signal-to-noise ratio, we reduced the data to five training blocks 

for each sample by averaging across four sessions in the younger adults (i.e., sessions 1-4, 5-9, 

10-14, 15-20) and five sessions in the older adults (i.e., sessions 1-5, 6-10, 11-15, 16-20, 21-25). 

Further, as we were interested in estimating and predicting general rather than task-specific WM 

training performance, we used an average of the set size achieved at the end of each session 

across the four binding or memory updating tasks in the younger adults, and across the three 

training tasks in the older adults as dependent measure.  

By modeling two latent variables, the intercept and the slope, LGC modeling allows for 

parsimoniously describing both linear and non-linear longitudinal trajectories within the SEM 

framework by accounting for error variance in the manifest variables. Whereas the value in the 

dependent variable at the beginning of training (ɛi = baseline cognitive performance) is 

represented by the intercept, the rate of change in the dependent variable (ɛs = increase/decrease 

in cognitive training performance) is expressed by the slope. Both latent factors are defined by a 

set of manifest variables (i.e., the training blocks). The model further allows for individual 

variation in the intercept (ů2
i = variance in baseline cognitive performance) and the slope (ů2

s = 



PREDICTING CHANGE IN TRAINING PERFORMANCE 22 
 

variance in change of training performance), and this variance can in turn be predicted by 

additional variables (i.e., individual differences). The covariance between the intercept and the 

slope (ůi,s) indicates the degree to which baseline performance and change of training 

performance are correlated, with a positive covariation supporting a magnification effect, and a 

negative covariation supporting a compensation effect. Finally, the model includes error 

covariances (ůŮ,Ů) accounting for correlated error terms (ε1-5) between the adjacent training 

blocks. Error variances (ů2ε1-5) were constrained to be equal across the five error terms.  

Model fit was evaluated using the chi-square statistic (χ2), the standardized root-mean-

square residual (SRMR), and the comparative fit index (CFI). Conventionally, good fit is 

indicated by values between 0 and 2df for the χ2, by values smaller than 0.08 for the SRMR and 

greater than 0.95 for the CFI (Hu & Bentler, 1999; Schermelleh-Engel, Moosbrugger, & Müller, 

2003). Although the root-mean-square error of approximation (RMSEA) is a popular measure of 

goodness-of-fit, we do not report it following the recent suggestion of Kenny, Kaniskan, and 

McCoach (2015). Using Monte Carlo simulations, they showed that the RMSEA tends to over-

reject properly specified models with small degrees of freedom, which is the case for all our 

baseline models (dfs = 7).  

All analyses were conducted in R (version 3.2.3; R Core Team, 2015) using the “lavaan” 

package (version 0.5.23; Rosseel, 2012). Figures depicting training performance were conducted 

using the “longCatEDA” package (version 0.31; Tueller, Van Dorn, & Bobashev, 2016). The 

package depicts categorical longitudinal data (in our case the dependent variable set size) by 

using shades of color instead of vertical position to indicate changes on categorical variables 

over time.  
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Results 

Data and analyses scripts are available on the Open Science Framework 

(https://osf.io/qgkp2). First, to test whether participants training performance increased over the 

course of the intervention and whether this increase follows a linear or non-linear pattern, we ran 

three baseline models for each sample (i.e., a no-growth, a linear growth, and a non-linear 

growth model). We selected the best fitting model using nested model comparisons. Second, we 

investigated whether baseline cognitive performance is associated with change in training 

performance and, if so, in which direction. Third, to examine how individual differences are 

associated with change in training performance, we included the individual differences variables 

to predict cognitive training trajectories.  

To avoid potential issues caused by multicollinearity of predictors, we ran separate 

models for (1) demographic variables, (2) real-world cognition, (3) motivation, (4) cognition-

related beliefs, (5) personality, (6) leisure activities, and (7) computer literacy and training 

experience. To estimate multicollinearity within the predictor categories, we assessed the 

Variance Inflation Factor (VIF) in both younger and older samples. The VIFs indicated no signs 

of multicollinearity, with the highest VIF = 2.18 (for correlation coefficients of the individual 

differences see Tables S1 and S2 in the supplemental materials). For each of these seven models, 

all measures were included simultaneously and regressed on the latent intercept and slope 

concurrently, although the primary interest lies on the prediction of change in training 

performance (i.e., the slope). Ordinal and metric predictors were z-transformed prior to data 

analysis. 
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Missing Data   

For data analysis, data were included for all participants who performed above chance 

level during at least 75 % of training sessions (i.e., ≥ 15 sessions for the younger samples, and ≥ 

19 sessions for the older sample). We did not include data from three older participants because 

they (contrary to the instructions) concurrently trained on two computers on two different levels 

of difficulty. One older participant had to re-install the training software after six training 

sessions due to technical issues and we used the following 19 sessions for data analyses.   

All participants from the Young-Updating sample completed 20 training sessions. 

However, due to a programming error, the feedback presented during training was incorrect for 

two participants for the first 2 and 4 sessions, respectively. Consequently, we treated the data 

from those sessions as missing. In the Young-Binding sample, most participants completed 20 

sessions (M = 19.83, SD = 0.70, range = 15-20). However, four participants did not complete one 

training session, one participant did not complete two training sessions, and one participant 

restarted training after 15 sessions. Therefore, we also treated those sessions as missing. Also, 

most older participants completed 25 sessions (M = 24.85, SD = 0.98, range = 19-28), except for 

three participants who completed less due to scheduling problems (i.e., 21, 23, and 24 sessions) 

and the one person who re-installed the training software (i.e., 19 sessions). If participants 

completed more than 25 training sessions, these additional sessions were omitted from data 

analysis. 

As we only had missing data for continuous variables but not for categorical or ordinal 

variables (e.g., gender or education), missing data were handled using Full Information 

Maximum Likelihood (FIML) estimation, thereby using all available information for estimating 

the model (see also Grimm, Ram, & Estabrook, 2017). 
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Bayes Factors 

We computed BFs for the effect of each predictor on the slope or intercept, allowing for 

quantifying the evidence for both the alternative hypothesis (i.e., predictor is associated with 

slope or intercept) and the null hypothesis (i.e., predictor is not associated with slope or 

intercept). Further, we computed BFs for the variances of the intercept and the slope, as well as 

for the covariance between the intercept and the slope. BFs were approximated based on the 

Bayesian Information Criterion (BIC), which evaluates model fit based on the log-likelihood 

taking the degrees of freedom into account, with a lower BIC reflecting a better model fit. The 

BF is computed using the difference in BICs when comparing the model freely estimating the 

predictor of interest and the model in which the predictor of interest is fixed to zero 

(Wagenmakers, 2007): 

BFH1 = exp(0.5*(BIC2 - BIC1),  

with BIC1 being the BIC for the alternative model freely estimating the predictor of 

interest, and BIC2 being the BIC for the identical model with the predictor of interest fixed to 

zero (i.e., the null model). BFs range from 0 to infinity, with higher values indicating stronger 

evidence for the alternative model. BFs are evaluated according to an adapted version of Wetzels 

and Wagenmakers (2012) to facilitate verbal interpretation (see Table 3). For example, a BF of 3 

indicates that the data is three times more likely to occur under the alternative hypothesis. BFs 

favoring the null model (i.e., BFs < 1) are expressed as 1/BF. 
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Table 3 

Verbal Labels to Guide Interpretation of Bayes Factors  

Bayes factor Interpretation 

> 100 Decisive 

30-100 Very strong 

10-30 Strong 

3-10 Substantial 

1-3 Ambiguous   

1 No evidence 

Note. Adapted from Wetzels and Wagenmakers (2012). 

 

Specification of the Baseline Model 

To identify the best fitting baseline model, we conducted several nested model 

comparisons for each sample and assessed whether there was a significant improvement of the 

relative fit (see Table 4). We compared three models: a no growth curve model assuming no 

change in cognitive performance (Model 1), a linear model assuming linear change in cognitive 

performance (Model 2), and a non-linear model assuming non-linear change in cognitive 

performance (Model 3). Model 3 was modeled according to Kline (2016) by fixing the first two 

coefficients of the slope factor to constants (0, 1) and freeing the remaining coefficients for the 

slope factor. This specification allows for estimating an empirical curvilinear trend that optimally 

fits the data. For all samples, Model 3 fitted the data significantly better than Models 1 and 2.  
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Table 4 

Nested Model Comparisons and Fit Indices for Baseline Latent Growth Curve Models 

 

 
χ 2 df SRMR CFI  

Model 

comparison 
Δχ2 Δdf 

Young-Updating          

Model 1 435.47 13 1.15 .22  - - - 

Model 2 52.56 10 0.08 .92  1 vs. 2 382.91 3 

Model 3 4.04 7 0.02 1.00  2 vs. 3 48.52 3 

Young-Binding          

Model 1 534.73 13 1.79 .12  - - - 

Model 2 142.11 10 0.16 .78  1 vs. 2 392.62 3 

Model 3 23.22 7 0.04 .97  2 vs. 3 118.89 3 

Old-Mixed          

Model 1 413.89 13 0.82 .23  - - - 

Model 2 32.88 10 0.08 .96  1 vs. 2 381.01 3 

Model 3 11.83 7 0.05 .99  2 vs. 3 21.06 3 

Note. Bold values represent significant χ2 statistics (p < .05)
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Latent Analysis of Training Performance 

Results for the baseline models are summarized in Figure 1. Training performance for 

each training task is visualized in Figure 2 for younger adults, and Figure 3 for older adults. 

Training performance across tasks for the three samples is visualized in Figure 4.  

The non-linear baseline LGC model fitted the data from the Young-Updating sample 

well, χ2(7) = 4.04, p = .775, SRMR = 0.02, CFI = 1.00. Results indicate that individuals started 

training at block 1 with a mean set size of 2.98 (ɛi = 2.98, SE = 0.05, p < .001) and significantly 

increased their performance by 0.49 (ɛs = 0.49, SE = 0.03, p < .001), resulting in estimated mean 

levels of training performance across the five blocks of 2.98 (block 1), 3.47 (block 2), 3.86 

(block 3), 4.19 (block 4), and 4.45 (block 5).3 We found strong evidence for a positive 

association between the intercept and the slope (ůi,s = 0.03, SE = 0.01, p = .004, BFH1 = 11.98), 

suggesting that individuals who showed higher baseline cognitive performance also showed 

larger training performance gains. Further, there was decisive evidence for individual differences 

in the variance of baseline cognitive performance (ů2
i = 0.15, SE = 0.03, p < .001, BFH1 > 100) 

and change therein (ů2
s = 0.03, SE = 0.01, p < .001, BFH1 > 100). 

In the Young-Binding sample, the non-linear baseline LGC model’s fit was acceptable, 

χ2(7) = 23.22, p = .002, SRMR = 0.04, CFI = 0.97. The Young-Binding sample started training at 

block 1 with a mean set size of 3.46 (ɛi = 3.46, SE = 0.05, p < .001) and significantly increased 

their performance by 0.69 (ɛs = 0.69, SE = 0.04, p < .001), resulting in estimated mean levels of 

training performance across the five blocks of 3.46 (block 1), 4.15 (block 2), 4.62 (block 3), 4.94 

(block 4), and 5.19 (block 5). Again, we found decisive evidence for a positive association 

between the intercept and the slope (ůi,s = 0.05, SE = 0.01, p < .001, BFH1 > 100), suggesting that 

                                                 
3 Estimated means are determined by the factor mean of the intercept ɛi and pattern coefficients λ and were 

computed by the formula: estimated mean = ɛi + λ*ɛs (see Kline, 2016 for details). 
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individuals who showed higher baseline cognitive performance also showed larger training 

performance gains. Further, we found decisive evidence for individual differences in the variance 

of baseline cognitive performance (ů2
i = 0.12, SE = 0.03, p < .001, BFH1 > 100) and change 

therein (ů2
s = 0.05, SE = 0.01, p < .001, BFH1 > 100).  

Finally, the non-linear baseline LGC model fit the data from the Old-Mixed sample well, 

χ2 (7) = 11.83, p = .106, SRMR = 0.05, CFI = 0.99, and showed that older adults started training 

at block 1 with a mean set size of 3.08 (ɛi = 3.08, SE = 0.05, p < .001) and significantly increased 

their performance by 0.40 (ɛs = 0.40, SE = 0.03, p < .001), resulting in estimated mean levels of 

training performance across the five blocks of 3.08 (block 1), 3.48 (block 2), 3.84 (block 3), 4.13 

(block 4), and 4.38 (block 5). We found ambiguous evidence for the absence of an association 

between the intercept and the slope (ůi,s = 0.02, SE = 0.01, p = .056, BFH0 = 1.39), but again we 

found decisive evidence for individual differences in the variance of baseline cognitive 

performance (ů2
i = 0.17, SE = 0.03, p < .001, BFH1 > 100) and change therein (ů2

s = 0.02, SE = 

0.00, p < .001, BFH1 > 100).  
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Figure 1. Baseline non-linear latent growth curve model of change in training performance. Bold numbers indicate 

significance (p < .05). Unstandardized estimates are presented for the Young-Updating sample (S1), the Young-

Binding sample (S2), and the Old-Mixed sample (S3). Squares represent observed variables (training blocks 1-5), 
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circles represent latent factors, and the triangle is modeled to represent the means of the latent factors (ɛi = mean of the 

intercept, ɛs = mean of the slope). ů2
i = variance of the intercept; ů2

s = variance of the slope; ůi,s = covariance of 

intercept and slope; λ3-5 = pattern coefficients; E1-5 = error terms; ů2ε1-5 = error variances; ůŮ,Ů = error covariances. 
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Figure 2. Growth curve plot of task-specific training performance for the Young-Updating and Young-Binding samples. Each line 

represents an individual, ordered vertically separately for each task using the sorter function implemented in the “longCatEDA” 

package (Tueller et al., 2016). Shades of grey represent set size achieved at the end of each training session. Thus, lines are darker 

with increasing training performance and task difficulty. 
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Figure 3. Growth curve plot of task-specific training performance for the 

Old-Mixed Sample. Each line represents an individual, ordered vertically 

separately for each task using the sorter function implemented in the 

“longCatEDA” package (Tueller et al., 2016). Shades of grey represent set 

size achieved at the end of each training session. Thus, lines are darker with 

increasing training performance and task difficulty.  
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Figure 4. Training performance averaged across training tasks for 

each individual (grey) and on the group level (black). Estimated 

means are presented for each training block.  

 

Association of Individual Differences with Change in Training Performance and Baseline 

Cognitive Performance 

Descriptive statistics for the individual differences variables are presented in Table 5. To 

predict training trajectories, we included all variables measuring the same aspect of individual 

differences simultaneously in the baseline model. Note that although results will be reported 

separately for the slope and the intercept, the individual differences variables were regressed on 

both latent factors concurrently.   

 

Table 5 

Descriptive Statistics for Individual Differences Variables 

 Sample 

Individual differences  Young-Updating Young-Binding Old-Mixed 

Demographics    

Age 22.57 (2.99) 24.77 (4.03) 70.40 (3.72) 

Gender (f/m) 39/19 45/19 30/38 

Real-world cognition    

Education 5 (0.00) 5 (0.00) 5 (1.48) 

CFQ - - 1.20 (0.42) 

EPT - - 25.54 (3.05) 

Motivation -0.08 (0.95) 0.09 (0.79) 5.15 (0.60) 

Cognition-related beliefs    

Grit 2.76 (0.60) 2.74 (0.61) 3.74 (0.52) 

TIS 4.47 (0.89) 4.31 (1.01) 3.98 (1.06) 
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GSE 2.98 (0.37) 3.00 (0.35) 3.06 (0.37) 

EXSE 65.66 (18.22) 62.84 (17.38) - 

NFC 5.07 (0.69) 5.03 (0.68) 5.24 (0.84) 

Personality    

Neuroticism 1.70 (0.63) 1.60 (0.65) 1.13 (0.53) 

Agreeableness 2.73 (0.60) 2.81 (0.42) 2.82 (0.34) 

Extraversion 2.40 (0.65) 2.39 (0.61) 2.39 (0.50) 

Openness 2.73 (0.57) 2.77 (0.54) 2.73 (0.43) 

Conscientiousness 2.71 (0.58) 2.75 (0.53) 2.90 (0.51) 

Leisure activities    

Crafts - - 2.31 (1.17) 

Developmental activities - - 2.41 (0.46) 

Experiential activities - - 3.40 (0.68) 

Game playing - - 2.56 (0.89) 

Physical activities - - 3.13 (0.90) 

Religious activities - - 2.43 (1.45) 

Activities with close social partner - - 3.15 (0.55) 

Group centered public activities - - 1.77 (0.55) 

Technology use - - 3.14 (0.79) 

TV watching - - 3.62 (0.90) 

Travel  - - 2.53 (0.57) 

Training / Computer    

Computer literacy - - 5.04 (1.52) 

Training experience (y/n) - - 23/45 

Note. Values are means and standard deviations in parentheses (median and median absolute 

deviation in parentheses for education). CFQ = Cognitive Failure Questionnaire; EPT = Everyday 

Problems Test; TIS = Theories of Intelligence; GSE = General Self-Efficacy scale; EXSE = Self-

Efficacy to Regulate Exercise scale; NFC = Need for Cognition.
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Individual differences predicting change in training performance. Overall, we found 

only limited evidence for individual differences predicting change in training performance, with 

most estimates supporting the null hypothesis (see Table 6). There was only one exception. In 

the Old-Mixed sample, we found substantial evidence for a negative association of growth 

mindset with change in training performance (b = -0.37, p = .005, BFH1 = 3.26), however 

indicating that individuals who believed more strongly that intelligence is malleable showed less 

increase in training performance.  

For most other individual differences, including demographic variables, real-world 

cognition, motivation, personality, leisure activities, and computer literacy and training 

experience, we found evidence against an association with change in training performance, with 

at least substantial evidence in favor for the null hypothesis (BFH0 ≥ 3).  

Individual differences predicting baseline cognitive performance. We found some 

evidence for individual differences predicting baseline cognitive performance, with all evidence, 

however, being observed in the older adults only (see Table 7).  

We found decisive evidence for an association of gender with baseline cognitive 

performance (b = 0.45, p < .001, BFH1 > 100), indicating that male individuals started training at 

a higher level of performance. Further, there was substantial evidence that age was negatively 

associated with baseline cognitive performance (b = -0.32, p = .002, BFH1 = 5.69), indicating that 

within the older age group, younger individuals showed higher baseline cognitive performance. 

Regarding real-world cognition, we found strong evidence for a positive association of EPT 

performance with baseline cognitive performance (b = 0.39, p < .001, BFH1 = 18.34), indicating 

that individuals who performed better in the EPT also showed higher baseline cognitive 

performance. In addition, we found substantial evidence for a positive association of grit with 
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baseline cognitive performance (b = 0.37, p = .002, BFH1 = 6.54), indicating that grittier 

individuals showed higher baseline cognitive performance. Regarding personality, we found very 

strong evidence for a negative association of extraversion with baseline cognitive performance (b 

= -0.44, p < .001, BFH1 = 43.40), indicating that individuals scoring high on extraversion showed 

lower baseline cognitive performance. Finally, we found substantial evidence for a negative 

association of religious activities with baseline cognitive performance (b = -0.34, p = .003, BFH1 

= 5.01), indicating that individuals with high levels of religious activities (e.g., frequent church 

attendance) started training at a lower level of performance. For most other individual 

differences, however, we found evidence against an association with baseline cognitive 

performance, with at least substantial evidence in favor for the null hypothesis (BFH0 ≥ 3).   
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Table 6 

Associations of Individual Differences with Change in Training Performance 

 Young-Updating Young-Binding Old-Mixed 

Individual differences b p BFH1 BFH0 b p BFH1 BFH0 b p BFH1 BFH0 

Demographic variables             

Age -0.30 .014 1.61 0.62 -0.26 .046 0.74 1.35 0.12 .396 0.17 5.80 

Gender 0.15 .244 0.25 3.98 0.27 .035 0.88 1.14 0.01 .937 0.12 8.22 

Real-world cognition             

Education - - - - - - - - 0.31 .021 1.24 0.81 

CFQ - - - - - - - - 0.07 .600 0.14 7.19 

EPT - - - - - - - - 0.09 .511 0.15 6.66 

Motivation 0.08 .563 0.15 6.46 0.24 .058 0.63 1.59 -0.13 .366 0.18 5.54 

Cognition-related beliefs             

Grit 0.19 .138 0.37 2.71 0.11 .439 0.17 5.97 -0.02 .864 0.12 8.13 

TIS -0.29 .028 1.06 0.95 -0.16 .250 0.24 4.23 -0.37 .005 3.26 0.31 

GSE -0.12 .467 0.17 5.87 -0.20 .121 0.38 2.60 -0.07 .673 0.13 7.55 

EXSE  -0.11 .424 0.18 5.57 0.24 .070 0.56 1.79 - - - - 

NFC 0.07 .698 0.14 7.07 0.09 .562 0.15 6.77 0.05 .767 0.13 7.89 

Personality             

Neuroticism 0.01 .961 0.13 7.61 0.00 .978 0.12 8.00 -0.13 .412 0.17 5.93 

Agreeableness -0.09 .532 0.16 6.28 0.05 .683 0.14 7.37 0.12 .441 0.16 6.15 
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Extraversion -0.20 .196 0.29 3.44 -0.29 .037 0.85 1.18 0.08 .614 0.14 7.27 

Openness -0.05 .688 0.14 7.03 0.04 .784 0.13 7.71 -0.32 .018 1.34 0.75 

Conscientiousness -0.27 .038 0.88 1.14 -0.08 .562 0.15 6.77 -0.29 .055 0.65 1.54 

Leisure activities             

Crafts - - - - - - - - -0.07 .637 0.14 7.38 

Developmental activities - - - - - - - - 0.16 .337 0.19 5.27 

Experiential activities - - - - - - - - -0.09 .652 0.13 7.46 

Game playing - - - - - - - - 0.05 .696 0.13 7.64 

Physical activities - - - - - - - - -0.06 .646 0.13 7.42 

Religious activities - - - - - - - - -0.05 .703 0.13 7.67 

Activities with social partner - - - - - - - - 0.00 .992 0.12 8.24 

Public activities - - - - - - - - 0.14 .380 0.18 5.66 

Technology use - - - - - - - - -0.19 .193 0.27 3.68 

TV watching - - - - - - - - -0.13 .352 0.19 5.40 

Travel - - - - - - - - -0.34 .011 1.84 0.54 

Computer/Training             

Computer literacy - - - - - - - - -0.28 .039 0.80 1.25 

Training experience - - - - - - - - 0.05 .702 0.13 7.66 

Note. Bold values represent Bayes factors ≥ 3 indicating substantial evidence for the respective hypothesis. b = standardized estimates; BF = 

Bayes factor; H1 = alternative hypothesis; H0 = null hypothesis; CFQ = Cognitive Failure Questionnaire; EPT = Everyday Problems Test; 
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TIS = Theories of Intelligence; GSE = General Self-Efficacy scale; EXSE = Self-Efficacy to Regulate Exercise scale; NFC = Need for 

Cognition. 
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Table 7 

Associations of Individual Differences with the Baseline Cognitive Performance 

 Young-Updating Young-Binding Old-Mixed 

Individual differences b p BFH1 BFH0 b p BFH1 BFH0 b p BFH1 BFH0 

Demographic variables             

Age -0.13 .336 0.21 4.86 -0.27 .039 0.82 1.22 -0.32 .002 5.69 0.18 

Gender 0.03 .815 0.13 7.41 0.17 .225 0.25 3.96 0.45 <.001 > 100 0.01 

Real-world cognition             

Education - - - - - - - - 0.25 .030 1.00 1.00 

CFQ - - - - - - - - -0.09 .429 0.17 6.06 

EPT - - - - - - - - 0.39 <.001 18.34 0.05 

Motivation 0.18 .179 0.31 3.25 0.20 .127 0.37 2.71 -0.13 .325 0.19 5.15 

Cognition-related beliefs             

Grit 0.03 .791 0.14 7.35 0.20 .129 0.37 2.71 0.37 .002 6.54 0.15 

TIS -0.34 .007 2.72 0.37 0.16 .263 0.23 4.37 -0.06 .635 0.14 7.37 

GSE 0.00 .997 0.13 7.61 -0.09 .498 0.16 6.38 -0.29 .033 0.95 1.06 

EXSE  0.14 .288 0.23 4.41 0.23 .080 0.51 1.97 - - - - 

NFC 0.23 .149 0.35 2.86 0.15 .310 0.21 4.86 0.12 .420 0.17 5.99 

Personality             

Neuroticism -0.03 .823 0.13 7.43 0.06 .657 0.14 7.26 -0.28 .021 1.31 0.76 

Agreeableness -0.16 .274 0.23 4.28 0.23 .072 0.55 1.83 0.20 .090 0.47 2.15 
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Extraversion 0.11 .504 0.16 6.11 -0.18 .213 0.26 3.81 -0.44 <.001 43.40 0.02 

Openness -0.02 .868 0.13 7.51 0.15 .247 0.24 4.21 -0.04 .722 0.13 7.74 

Conscientiousness -0.15 .292 0.22 4.46 -0.03 .833 0.13 7.83 0.32 .007 2.94 0.34 

Leisure Activities             

Crafts - - - - - - - - 0.25 .046 0.75 1.33 

Developmental activities - - - - - - - - 0.24 .085 0.49 2.05 

Experiential activities - - - - - - - - -0.31 .061 0.62 1.62 

Game playing - - - - - - - - 0.08 .514 0.15 6.68 

Physical activities - - - - - - - - -0.03 .838 0.12 8.07 

Religious activities - - - - - - - - -0.34 .003 5.01 0.20 

Activities with social partner - - - - - - - - -0.09 .490 0.15 6.51 

Public activities - - - - - - - - 0.21 .134 0.35 2.83 

Technology use - - - - - - - - 0.08 .563 0.14 6.98 

TV watching - - - - - - - - 0.07 .572 0.14 7.03 

Travel - - - - - - - - 0.03 .838 0.12 8.07 

Computer/Training             

Computer literacy - - - - - - - - 0.20 .114 0.39 2.57 

Training experience - - - - - - - - 0.17 .173 0.29 3.41 

Note. Bold values represent Bayes factors ≥ 3 indicating substantial to decisive evidence for the respective hypothesis. b = standardized 

estimates; BF = Bayes factor; H1 = alternative hypothesis; H0 = null hypothesis; CFQ = Cognitive Failure Questionnaire; EPT = Everyday 
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Problems Test; TIS = Theories of Intelligence; GSE = General Self-Efficacy scale; EXSE = Self-Efficacy to Regulate Exercise scale; NFC = 

Need for Cognition. 
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Additional Analyses of the First Training Block  

A limitation of our modeling approach is that the intercept represents the mean 

performance across the first block (i.e., the average set size of the first 4 or 5 training sessions, 

depending on the sample). Thus, this analysis does not allow to directly predict change in 

training performance during this first training block in the context of overall change in training 

performance. Therefore, to investigate how individual differences are associated with baseline 

cognitive performance at the first training session and change in training performance across the 

first training block, we additionally ran the same models for the first training block only, with the 

first training session as the intercept and change modeled across the first four to five training 

sessions, depending on the sample. Detailed results of these analyses are reported in the 

supplemental material (see Tables S3 to S6, Figure S1). 

Overall, although the BFs were somewhat lower in these additional analyses (possibly 

due to the increased noise in the non-averaged data), the pattern of results was largely similar to 

the findings of our primary analyses, with a few exceptions. Whereas a model assuming a non-

linear change in training performance still fitted the data of the Old-Mixed sample best, nested 

model comparisons indicated the best fit for a model assuming a linear change in both younger 

samples (see Table S3 in the supplemental material). Hence, younger, but not older adults 

showed steeper performance increases during the first few sessions than across all sessions. As 

for the primary analyses, evidence for the variance of baseline cognitive performance and change 

in cognitive performance was decisive for all samples (see Table S4 in the supplemental 

material). However, different to the primary analyses, we found substantial evidence for the 

absence of an association between the intercept and slope in both younger samples. The evidence 
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for this association was again ambiguous for the older adults (see Table S4 in the supplemental 

material).  

Similar to the primary analyses, most predictors were also unrelated to change in training 

performance over the first few training sessions (see Table S5 in the supplemental material). In 

addition to the now strong evidence for a negative association with growth mindset (b = -0.44, p 

= .001, BFH1 = 10.37), we found substantial evidence for a negative association with age (b = -

0.36, p = .004, BFH1 = 3.38), indicating that, within the older sample, younger individuals 

changed more during the first training block. Taken together with the finding that the slope 

followed a linear function in the younger samples, but a non-linear function in the older sample, 

this suggests that age differences play a bigger role at the beginning of training than at later 

stages.  

Results were also largely similar for the predictors of baseline cognitive performance at 

the first session, with a few exceptions (see Table S6 in the supplemental material). First, in the 

Old-Mixed sample, there was substantial evidence for a negative association of general self-

efficacy with performance in the first session (b = -0.39, p = .001, BFH1 = 7.03). Second, in the 

Young-Updating sample, we found substantial evidence for a negative association of a growth 

mindset (b = -0.38, p = .002, BFH1 = 5.35). Third, the associations of the intercept with age and 

religious activities were no longer substantial when analysing only the first session.  
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Discussion 

The objectives of the present work were threefold. First, we estimated individual training 

trajectories. Second, we related baseline cognitive performance (i.e., the intercept) to change in 

training performance across the training phase (i.e., the slope). Third, we examined the extent to 

which individual differences were predictive of change in training performance. We modeled 

LGCs for three WM training interventions in younger and older adults that comprised a broad set 

of potential individual differences variables previously discussed in the literature, including 

demographic variables, motivation, cognition-related beliefs, and personality traits. Using BFs 

enabled us to evaluate the strength of evidence for the presence as well as the absence of a 

possible association between individual differences in the above variables and change in training 

performance. 

Performance improved non-linearly across the training phase in all three samples. In line 

with the magnification account, this change in training performance was positively associated 

with baseline cognitive performance, indicating that individuals who started off on higher 

performance levels also improved more throughout the training phase. However, whereas 

evidence for the presence of this relationship was strong to decisive in the two younger samples, 

we found ambiguous evidence for the absence of it in the older sample. Finally, although 

baseline cognitive performance was predicted by individual differences in some variables (i.e., 

demographics, real-world cognition, cognition-related beliefs, personality, and leisure activities), 

only 1 out of 29 variables predicted change in training performance, and did so only 

inconsistently across samples. More specifically, we found that, in the older sample, growth 

mindset was negatively associated with change in training performance. Taken together, our 

findings suggest that changes observed during training are best predicted by baseline cognitive 
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performance, with individual differences in demographic variables, real-world cognition, 

motivation, cognition-related beliefs, personality traits, leisure activities, and computer and 

training experience playing a negligible role only.  

Magnification of Training  Performance 

 In all three samples, individuals substantially increased their performance across the 

training phase, with a steeper increase at the beginning of the training phase leveling off toward 

the end of the training phase. Large training effects are an established finding in the literature 

across various training regimes in both younger (e.g., Brehmer et al., 2012; Jaeggi et al., 2008; 

Sprenger et al., 2013; von Bastian & Oberauer, 2013) and older adults (e.g., von Bastian et al., 

2013; Zimmermann, von Bastian, Röcke, Martin, & Eschen, 2016; see Karbach & Verhaeghen, 

2014 for a meta-analysis) indicating that improvements in complex cognitive tasks are not 

limited to younger adults, but extend into old age.  

The positive association between baseline cognitive performance and change in training 

performance is in line with studies reporting that general WM performance strongly predicts 

cognitive learning in associative and category-learning tasks (e.g., Lewandowsky, 2011; Tamez, 

Myerson, & Hale, 2012) and previous literature on age-related and ability-related magnification 

effects in the context of cognitive training (e.g., Bürki et al., 2014; Schmiedek et al., 2010). 

Magnification effects are more typically observed in the context of strategy-based training than 

process-based training (e.g., Karbach & Verhaeghen, 2014), possibly indicating that the training 

intervention in this study facilitated strategy acquisition (for a more detailed discussion, see De 

Simoni & von Bastian, 2017; Guye & von Bastian, 2017). It has been argued that individuals 

with higher levels of cognitive performance at baseline have more cognitive capacity available to 

acquire and perform strategies to enhance cognitive efficiency during training (Lövdén et al., 
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2012). However, the positive association between baseline cognitive performance and change in 

cognitive performance was less pronounced in the older sample, providing ambiguous evidence 

for the absence of this association in the older adults. One possible explanation for this finding is 

that, although often proclaimed otherwise, older adults in our sample differed somewhat less 

than younger adults in their training slope (ů2
s = 0.02 compared to ů2

s = 0.05 in the Young-

Binding and ů2
s = 0.03 in the Young-Updating samples). Hence, it is possible that power was 

simply too low to detect the positive relationship, as indicated by the ambiguous BF. 

Furthermore, future studies are needed to directly compare the association of baseline cognitive 

ability with change in cognitive performance in younger and older adults in order to draw 

conclusions regarding age-related differences in magnification effects.  

Limited Evidence for Individual Differences Predicting Change in Training Performance 

Concerning the debate about the effectiveness of cognitive training interventions, an 

often-voiced explanation for inconsistencies between the studies is the potential role of 

individual differences on training outcomes (e.g., Shah et al., 2012), with individually-tailored 

interventions potentially maximizing the effects of cognitive training. We indeed found 

substantial variance among individuals in change of training performance in all samples that 

could be potentially predicted by variables that had been discussed in the past (Katz et al., 2016). 

Therefore, we examined how (1) demographic variables, (2) real-world cognition, (3) 

motivation, (4) cognition-related beliefs, (5) personality, (6) leisure activities, and (7) computer 

literacy and training experience predicted variance in the training trajectories. Based on previous 

literature, we expected a positive association of motivation, growth mindset, and 

conscientiousness, and a negative association of age with change in training performance. For all 
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the other individual differences, the analyses were exploratory. However, our results did not 

support our expectations.  

First, we found substantial evidence for the absence of an association of age with change 

in training performance across the entire training intervention at least in the older sample. 

However, in our additional analyses we found substantial evidence for a positive association of 

age with change in training performance in the first training block for older adults, indicating that 

age differences might be relevant during early stages of training, but less so later on. In addition, 

change in training performance was positively associated with baseline performance, implying 

that age and initial cognitive performance indeed may need to be conceptually separated when 

examining magnification and compensation effects (von Bastian & Oberauer, 2014).  

Second, we found evidence for the absence of an association of change in training 

performance with previously proposed personality traits such as neuroticism and 

conscientiousness. Hence, although neuroticism has been reported to be associated with mean 

training performance and transfer effects (e.g., Studer-Luethi et al., 2012; 2016), it may only play 

a neligible role in predicting change in training performance. This is in line with previous 

findings showing no significant association of neuroticism with training gains (Studer-Luethi et 

al., 2012; 2016).  

Third, we found evidence for the absence of an association of training-related motivation 

with change in training performance. Although previous literature has shown within-person 

associations between daily motivation and daily cognitive performance during a training 

intervention (Brose et al., 2012), we did not observe such a relationship on the between-person 

level, suggesting that motivation might be more strongly linked to daily fluctuations in cognitive 

performance than to overall training trajectories.  
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Fourth and contrary to our expectations, we found evidence for a negative association of 

growth mindset with change in training performance in the older sample. Similarly, Thompson 

and colleagues (2013) reported a marginally significant negative association of growth mindset 

with improvements in a trained WM task in younger adults. We can only speculate about what 

causes this rather counterintuitive finding, but one possible explanation could be that individuals 

with high levels of growth mindset are so heavily focused on changing their cognitive 

performance that they pay too much attention to their cognitive performance, drawing away 

resources that would be necessary to perform the training tasks efficiently (see also Studer-

Luethi et al., 2012).  

Limitations  

Despite several strengths of the present study, there are some limitations. First, our 

analyses do not allow for a direct comparison between the three samples. Although they were all 

undergoing highly similar training regimes, there were slight differences between the 

interventions regarding the exact tasks being used in the different age-groups (single vs. mixed-

paradigm training), and the features of the training interventions (e.g., frequency of the training 

sessions, monetary reward). Thus, in order to directly compare the presence or absence of the 

individual differences in younger and older adults, future studies should pursue an age-

comparative approach. 

Second, the averaging across several training tasks and training sessions to improve the 

robustness of our performance indicators, was, unavoidably, accompanied some shortcomings. 

First, averaging across multiple sessions and tasks comes with a loss of more fine-grained 

information regarding the performance in the single tasks and sessions. Second, it prevented us 

from predicting early performance changes in context of overall change in training performance 
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(i.e., the first 4 or 5 sessions, but see supplemental material). Using the average across the first 

few sessions as a measure of baseline cognitive performance comes, however, also with the 

advantage to reduce noise from two sources of unwanted variance, that is (1) from training-

specific adjustment processes at the beginning of the training (i.e., getting used to the computer, 

understanding the nature of the training tasks), and (2) from substantial day-to-day variability in 

cognitive performance (Schmiedek, Lövdén, & Lindenberger, 2013). 

Finally, although our group sizes were considerably larger than the median group size in 

the cognitive training literature (n = 22; Lampit et al., 2014), they are still fairly small when 

using SEM and relying on traditional NHST. In the presence of small sample sizes, p-values can 

vary greatly, known as “the dance of the p-values” (Bogg & Lasecki, 2015; Cumming, 2011; 

Halsey, Curran-Everett, Vowler, & Drummond, 2015; von Bastian et al., 2017). To overcome 

this limitation, we additionally evaluated the evidence for and against the existence of links 

between the individual differences variables and change in training performance using BFs, as 

they vary less when power is low (Dienes, 2014). The size of the BFs indicate that our sample 

sizes were sufficient to provide conclusive evidence for the absence of the majority of 

investigated associations.  

Conclusion 

To the best of our knowledge, our study was the first to comprehensively investigate a 

broad range of individual differences in cognitive lab and real-world performance, 

demographics, motivation, cognition-related beliefs, personality traits, leisure activities, as well 

as computer literacy and training experience, which had previously been discussed to potentially 

predict change in training performance, in different study populations (i.e., younger and older 

adults). However, although we found some of the proposed variables predicted baseline 
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cognitive performance, change in training performance was predicted primarily by baseline 

cognitive performance in the younger adults, suggesting that individuals scoring higher in the 

beginning of training also showed more pronounced improvements across the training phase.  
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