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Abstract 

A substantial part of age-related episodic memory decline has been attributed to the 

decreasing ability of older adults to encode and retrieve associations among simultaneously 

processed information units from long-term memory. In addition, this ability seems to share 

unique variance with reasoning. In this study, we therefore examined whether process-based 

training of the ability to learn and remember associations has the potential to induce transfer 

effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 

years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-

based object-location memory training, while the active control group (n = 31) practiced 

visual perception on the same material. Near (spatial episodic memory), intermediate (verbal 

episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks 

at four measurements (before, midway through, immediately after, and four months after 

training). Linear mixed effects models revealed transfer effects on spatial episodic memory 

and reasoning that were still observed four months after training. These results provide first 

empirical evidence that process-based training can enhance healthy older adultsô associative 

memory performance and positively affect untrained episodic memory and reasoning abilities.  

Keywords: cognitive training, memory training, episodic memory, object-location 

memory, aging 
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Transfer after Process-Based Object-Location Memory Training in Healthy Older Adults 

 

Old age is characterized by a relatively large average episodic memory decline (e.g., 

Rönnlund, Nyberg, Bäckman, & Nilsson, 2005; Schaie, 2005). According to the associative 

deficit hypothesis (Naveh-Benjamin, 2000), a substantial part of this decline can be attributed 

to the decreasing ability of older adults to encode and retrieve associations between 

simultaneously processed information units from long-term memory (for a review see Shing 

et al., 2010; for meta-analyses see Old & Naveh-Benjamin, 2008; Spencer & Raz, 2005). The 

most frequent memory complaints of older adults, that is, forgetting names of acquaintances 

or locations of objects (Bolla, Lindgren, Bonaccorsy, & Bleecker, 1991; Ossher, Flegal, & 

Lustig, 2013), imply that their deficient ability to learn and remember associations between 

information units directly affects their quality of life. Furthermore, the ability to create stable 

associations between simultaneously processed information units facilitates the construction 

and manipulation of new structural representations required for reasoning (Oberauer, Süss, 

Wilhelm, & Sander, 2007). Latent variable studies indeed demonstrated that this ability 

predicts variance in reasoning above and beyond working memory and speed in young adults 

(Kaufman, DeYoung, Gray, Brown, & Mackintosh, 2009) and in samples covering most of 

the adult lifespan (Tamez, Myerson, & Hale, 2012). Consequently, a cognitive training 

intervention enhancing older adultsô ability to encode and retrieve associations from long-

term memory has the potential to improve their episodic memory more generally, their 

reasoning ability, and their quality of life.  

So far, episodic memory of healthy older adults has been mainly targeted by strategy-

based training. Meta-analyses summarizing this research have shown that these interventions 

induce small to medium performance gains in the trained tasks (Gross et al., 2012; 

Verhaeghen, Marcoen, & Goossens, 1992). However, often only subgroups of the trained 
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older adults apply the practiced strategies after training (e.g., Brehmer et al., 2008; Gross et 

al., 2014; Nyberg et al., 2003). Strategies acquired through such interventions are also often 

very specific and do not yield transfer even to other untrained episodic memory tasks (for 

reviews, see Eschen, 2012; Lustig, Shah, Seidler, & Reuter-Lorenz, 2009).  

An alternative training approach is process-based training which aims to directly 

increase the efficiency of basic cognitive processes through extensive repeated practice 

(Lövdén, Bäckman, Lindenberger, Schaefer, & Schmiedek, 2010; Willis & Schaie, 2009). In 

general, process-based training has shown more promising transfer effects in healthy older 

adults than strategy-based training (Morrison & Chein, 2011) and thus may be more suitable 

to target episodic memory processes in healthy older adults. Nevertheless, as yet, most 

research has focused on interventions practicing working memory or executive functions. 

Recent meta-analyses indicate that these interventions induce small to medium improvements 

in untrained working memory and executive functioning tasks, but findings on reasoning have 

been inconsistent (for positive findings see Karbach & Verhaeghen, 2014; for negative 

findings see Melby-Lervåg & Hulme, 2013, 2016).  

To our knowledge, only two process-based training interventions targeting episodic 

memory processes in healthy older adults have been investigated: one practicing recollection 

processes in word list recognition (Jennings & Jacoby, 2003; Jennings, Webster, Kleykamp, 

& Dagenbach, 2005; Stamenova et al., 2014) and another practicing spatial navigation 

(Lövdén et al., 2012). Although both interventions led to large improvements in the trained 

tasks, there was little evidence for transfer. For the recollection intervention, previously found 

transfer effects to an untrained word list recognition task and a working memory task 

(Jennings et al., 2005) could not be confirmed in a later study with a larger sample size 

(Stamenova et al., 2014). For the spatial navigation intervention, Lövdén et al. (2012) also 

observed no transfer effects across 14 outcome tasks measuring a wide range of cognitive 
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abilities both at post-training and at four-month follow-up. However, both interventions did 

not specifically target the ability to encode and retrieve associations from long-term memory. 

Moreover, the training tasks in both interventions may not have been completed by episodic 

memory processes at all. Stamenova et al. (2014) found that training gains in their word list 

recognition training task were not predicted by baseline episodic memory, but by baseline 

working memory performance. Likewise, the spatial navigation training task employed by 

Lövdén et al. (2012) could be completed by simply using procedural route knowledge or mere 

exploration. Hence, it is unclear whether process-based training of the ability to encode and 

retrieve associations from long-term memory in healthy older adults improves this ability and 

produces transfer to untrained cognitive abilities. 

The above findings on cognitive training in healthy older adults have to be regarded 

with caution. Prior cognitive training research has been extensively criticized on 

methodological grounds. Many studies included only passive control groups, thereby 

confounding potential expectancy or non-cognitive intervention effects with training- induced 

improvements (cf. Dougherty, Hamovitz, & Tidwell, 2016; von Bastian & Oberauer, 2014). 

Furthermore, transfer was often assessed with only one task per outcome ability. Therefore, 

observed transfer effects may have been solely driven by task-specific surface commonalities 

between training and transfer tasks (e.g., material or response modality, cf. Lövdén et al., 

2010; Shipstead, Reddick, & Engle, 2012). More theoretical criticisms on previous cognitive 

training research include the often arbitrary selection of cognitive outcome and control 

training tasks which does not allow for evaluating positive and negative transfer (i.e., 

convergent and discriminant validity, cf. Noack, Lövden, & Schmiedek, 2014) and arbitrary 

classifications of cognitive outcome tasks as representing near, intermediate, or far transfer 

(cf. Noack, Lövdén, Schmiedek, & Lindenberger, 2009). 

The Present Study 
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The main aim of the present study was to examine the potential of process-based 

training to improve the ability to encode and retrieve associations between simultaneously 

processed information units from long-term memory and to yield transfer to untrained 

episodic memory and reasoning tasks in healthy older adults. Furthermore, we wanted to 

overcome methodological and theoretical shortcomings of previous cognitive training studies. 

For this purpose, we developed a process-based training regime in which participants 

repetitively practiced object-location memory (OLM) tasks. OLM critically depends on the 

ability to encode and retrieve associations between simultaneously processed objects and their 

locations (Postma, Kessels, & van Asselen, 2008). OLM performance decrements in older 

adults have been repeatedly demonstrated (for reviews see Kessels & Postma, 2006 and Uttl 

& Graf, 1993; Noack, Lövdén, Schmiedek, & Lindenberger, 2013). More importantly, 

memory for objects and memory for locations are relatively mildly impaired in old age, but 

profound memory deficits arise for object-location associations (Kessels, Hobbels, & Postma, 

2007; Naveh-Benjamin, 1987; 1988; Old & Naveh-Benjamin, 2008; but see Soei & Daum, 

2008). Besides, OLM is particularly suitable for a process-based training approach because it 

solely involves visuo-spatial material. Strategies that are often spontaneously and successfully 

applied for remembering associations involving verbal information (e.g., sentence generation 

or interactive imagery; Dunlosky, & Hertzog, 2001; Kuhlmann, & Touron, 2012; Richardson, 

1998) are less helpful for forming stable associations between objects and their locations. 

OLM training may also be particularly successful in older adults because OLM relies heavily 

on the hippocampus (for a meta-analysis see Kessels, de Haan, Kappelle, & Postma, 2001; for 

reviews see Burgess, 2008; Postma, Kessels, & van Asselen, 2008), one of the most plastic 

brain regions up into old age (Goh & Park, 2009; Lövdén et al., 2010). To maximize the 

interventionôs effectiveness, OLM training was both variable (by using three different tasks; 
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Schmidt & Bjork, 1992) and adaptive (by adjusting task difficulty to individual performance; 

Klingberg, 2010, but see von Bastian & Eschen, 2016). 

We selected our cognitive outcome abilities according to Noack et al.ôs (2009) 

theoretical framework for classifying the scope of transfer effects. It is based on Carrollôs 

(1993) hierarchical model of human intelligence with general intelligence on top, eight broad 

cognitive abilities on the second level, and 69 narrow cognitive abilities on the third level. 

Transfer is categorized as near, intermediate, or far according to whether training positively 

affects tasks measuring the trained narrow ability, a different narrow but same broad ability, 

or different broad abilities, respectively. We chose spatial episodic memory, verbal episodic 

memory, and reasoning as outcome abilities. According to Carrollôs model of intelligence, 

OLM and spatial episodic memory belong to the same narrow ability (visual memory), verbal 

episodic memory to a different narrow (meaningful memory) but the same broad ability 

(memory and learning), and reasoning to a different broad ability (reasoning). These abilities 

thus represent near, intermediate, and far transfer, respectively.  

The formation of object-location associations depends on simultaneous visual 

processing of objects and locations during encoding (Postma et al., 2008). To demonstrate 

that transfer of process-based OLM training to spatial and verbal episodic memory and 

reasoning is based on improved associative memory rather than enhanced visual perception 

for objects and locations (convergent validity), we included an active control group that 

practiced visual perception tasks with the same stimuli and duration as the OLM training 

tasks. The control intervention was non-adaptive, as adjusting the difficulty of the visual 

perception tasks by reducing stimulus discriminability would have compromised our goal to 

primarily control for improvements in visual perception of the same stimuli. We also refrained 

from adjusting difficulty by reducing stimulus presentation time, as it proved infeasible to 

define the time difference between levels of difficulty long enough to affect performance, but 
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short enough for conscious processing at high levels of difficulty. To still achieve between-

group comparability in training motivation and effort, the control group received similarly 

extensive performance feedback as the OLM training group. To demonstrate discriminant 

validity and increase the plausibility of the control intervention, we also assessed visual 

perception.   

We administered at least three heterogeneous tasks per assessed outcome ability and 

analyzed transfer effects on the level of these cognitive abilities with linear mixed effect 

models. To evaluate the maintenance of transfer effects, the cognitive test battery was not 

only administered before, after the first half of the training period, and immediately after 

training, but also four months after training completion. 

Based on prior research on process-based training in older adults, we expected that 

OLM performance would improve linearly across the training period and lead to large 

performance gains. We had no clear predictions about the scope and maintenance of transfer 

effects of the OLM training. The few available studies on process-based episodic memory 

training in healthy older adults generally failed to demonstrate any transfer immediately after 

training and at four-month follow-up. However, according to the associative deficit 

hypothesis and to findings showing that the ability to encode and retrieve associations from 

long-term memory contributes to reasoning performance, OLM training could potentially 

yield transfer to spatial episodic memory, verbal episodic memory, and reasoning, that is, 

induce near, intermediate, and far transfer. We did not expect OLM training to yield transfer 

to visual perception, and the visual perception control intervention, if at all, to induce transfer 

to this cognitive ability only.   

Methods 

General Procedure 
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Experimental OLM training and visual perception control training comprised two 

phases with 15 sessions each that participants had to complete within three weeks. A one-

week break separated the phases. Participants trained at home on their personal computers. 

Material, structure, and duration of the experimental and control interventions were similar, 

but only the experimental intervention was adaptive.  

Participants completed the cognitive transfer test battery and several questionnaires at 

four times: before training (T1), in the week after the first training phase (T2), in the week 

after the second training phase (T3), and four months after training completion (T4). They 

were tested in groups of up to four. Each session took 2.5 h (including a 15-min break). 

Participants also underwent an individual 1.5-h neuroimaging session (including functional 

and structural magnetic resonance imaging (fMRI and sMRI), fluid-attenuated inversion 

recovery (FLAIR), and diffusion tensor imaging) within the same week in our lab, but these 

data are not in the focus of the present study. 

The T1 assessment was preceded by two screening phases. In the first screening phase, 

potential participants completed screening questionnaires at home. Eligible participants were 

invited to the second screening phase. In this individual 1.5-h screening session in our lab, 

participants completed further screening tests and questionnaires and underwent an MRI 

simulator training for familiarization with the scanner and practice of the fMRI paradigm. 

After the baseline assessment, eligible participants were finally included in the study and 

randomly assigned to either the experimental or the active control group. Within a week 

before the start of the first training phase, participants were invited to an individual 1-h 

training introductory session in which a practice version of their training regime was 

administered.  

The study was conducted double-blind, so that neither participants nor experimenters 

assessing the outcome measures were aware of group assignment. Participants were recruited 
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for a ñcognitive training studyò, but were not informed about the two training conditions. 

Study staff not involved in assessing the outcomes randomly assigned participants to groups, 

conducted the training introductory sessions, monitored training compliance, and served as 

contact during training.  

The study was conducted in four waves to accommodate scanner access availability. 

Randomization was stratified by study wave and gender (Kang, Ragan, & Park, 2008) and 

was subject to two restrictions. First, to maintain blindness for training conditions, members 

of couples participating in the study (four participants) were assigned to the same group. 

Second, as OLM training duration could increase with advancing levels of difficulty, each 

control participantôs training duration was matched to that of a participant in the experimental 

condition (for details see paragraph on training). To ensure that the matching procedure could 

be implemented, this matching partner had to be chosen among those starting the first training 

phase at least a week before the active control participant.  

Participants 

Participants were recruited at lectures for senior citizens at the University of Zurich, 

through newspaper articles, advertisements in magazines for older adults, public talks, flyers, 

and word of mouth. All participants gave written informed consent and were paid after the 

completion of different study parts. The study was approved by the Ethics Committee of the 

Canton of Zurich. 

Inclusion criteria were age between 60-75 years, right-handedness, native or highly 

proficient German speaker, basic computer and internet experience, and access to computer 

and internet during training. Exclusion criteria were previous or current neurological and 

psychiatric disorders or substance use negatively affecting brain function, sensory and motor 

deficiencies hindering the completion of training tasks and outcome measures, violation of 

MRI safety requirements, participation in another training study within the last five years, 
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failed screening measures (see below), and pathological incidental findings in the baseline 

sMRI and FLAIR assessments.  

Figure 1 illustrates the recruitment process alongside the specific reasons for exclusion 

and drop-out of participants. Out of 180 participants in the first screening phase, 56 were 

excluded based on eligibility criteria and 44 dropped out. After the second screening phase 

and the neuroimaging baseline assessment another 7 participants were excluded and 5 

dropped out. Finally, 68 participants were included in the study. During the second training 

phase, one participant in the experimental condition dropped because of personal reasons1. 

Descriptive data of the remaining 67 participants are listed in Table 1. 

                                                 
1 We can only speculate why the retention rate was as high in our study, but we suggest two reasons. 

First, the financial compensation scheme explicitly rewarded retention in the study, as reimbursement increased 

over its course (CHF 30 after screening, CHF 70 after T1, CHF 150 after T3, and another CHF 70 after T4). 

Second, frequent and regular contact with the study staff at the many experimental sessions (e.g., two sessions at 

T1-T4) and during training (e.g., weekly e-mails) probably further enhanced study commitment.  
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Figure 1. Recruitment process. 

 

Screening 

First screening phase. Potential participants received four questionnaires assessing the 

following variables: health and demographic data, computer and internet experience, MRI 

safety requirements, and handedness (Annett, 1970). Additionally sent questionnaires are 

described in the Supplemental Online Materials. 

Second screening phase. In an individual lab session, participants were screened for 

cognitive deficits indicative of Mild Cognitive Impairment or dementia with the Consortium 

to Establish a Registry for Alzheimerôs Disease Neuropsychological Assessment Battery 

(CERAD-NAB; Berres, Monsch, Bernasconi, Thalmann, & Stähelin, 2000) and for clinically 
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relevant depressive episodes with the short version of the Geriatric Depression Scale (GDS; 

Sheik & Yesavage, 1986). As descriptive measure, crystallized intelligence was assessed with 

the Mehrfachwahlwortschatztest B (MWT-B; Lehrl, 1977).  

The CERAD-NAB includes seven subtests: the Mini Mental State Examination 

(MMSE, Folstein, Folstein, & McHugh, 1975), a semantic fluency test, a 15-item form of the 

Boston Naming Test, a constructional praxia test, a figural delayed free recall test, a word list 

learning test, a delayed free recall test, and a delayed recognition test for this word list. For 

the figural and the word list delayed free recall tests, two measures are taken into account: the 

number of recalled items per se (recall performance) and the percentage of recalled items 

from correctly copied or recalled items in the last learning trial (savings). The short form of 

the GDS comprises 15 yes-no questions. Sum scores greater than 5 are indicative of clinically 

relevant depressive episodes. In the 37 items of the MWT-B, participants have to mark the 

real word among four nonsense words.  

Participants were not included in the study if they scored lower than 28 in the MMSE, 

performed 1.5 SD below age-, gender-, and education-specific norms in more than one of the 

nine other measures of the CERAD-NAB, or scored greater than 5 in the GDS. Descriptive 

statistics for the screening and descriptive measures are reported in Table 1. 
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Table 1  

Demographic and Descriptive Variables and Screening Measures 

Variable 
Group 

t p 
OLM Active Control 

Demographic and descriptive variables 

Sample size (n) 36 31   
Age (years) 66.75 (4.17) 68.23 (3.84) 1.50 .139 
Gender (f/m)a 22/14 19/12 < 0.01 .988 
Education (years) 14.97 (3.32) 14.10 (3.27) -1.08 .282 
Computer experience (years) 18.69 (7.74) 19.26 (7.59) 0.30 .764 
Internet experience (years) 12.49 (5.82) 12.29 (5.53) -0.14 .889 
MWT-B (IQ) 123.61 (12.05) 122.23 (12.89) -0.45 .651 

Screening measures 
GDS (0-15, normal < 6) 0.50 (0.70) 0.81 (1.17) 1.28 .207 
MMSE (0-30, normal > 28) 29.11 (0.75) 29.39 (0.72) 1.54 .129 
CERAD (z-scores)     

Semantic fluency -0.01 (0.76) 0.11 (0.90) 0.62 .536 
Boston naming test 0.67 (0.60) 0.93 (0.47) 1.98 .052 
Word list learning 0.62 (0.80) 0.58 (0.92) -0.20 .839 
Word list delayed free recall 0.44 (0.86) 0.41 (0.94) -0.13 .899 
Word list delayed free recall savings 0.14 (0.87) 0.15 (1.05) 0.04 .971 
Word list delayed recognition 0.26 (0.72) 0.28 (0.70) 0.10 .921 
Constructional praxia 0.39 (0.71) 0.32 (0.84) -0.35 .728 
Figural delayed free recall 0.36 (1.09) 0.20 (1.18) -0.60 .548 
Figural delayed free recall savings 0.13 (0.78) 0.01 (0.89) -0.60 .551 

Note. Means are provided alongside standard deviations in parentheses where applicable.  
a c2 instead of t is reported. 

 

Training   

Training was self-administered at home using the open-source Java-based software 

Tatool (von Bastian, Locher, & Ruflin, 2013; www.tatool.ch). After each training session, 

data were automatically uploaded to a web server allowing for constant monitoring of 

participantsô compliance. Automatized online analyses permitted the detection of 

irregularities (e.g., accuracy below chance level). The experimenters monitoring training 

compliance also supported the participants in case of technical difficulties. To ensure all 

participants were able to use the training software and to complete the training tasks, they 

practiced the installation of the software and completed a short version of the first training 

session with different material in an individual 1-h introductory training session. In addition, 

participants received a manual with step-by-step software installation instructions and detailed 
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information about training operations and procedures. Participants were informed that the 

training software permitted the completion of only one session per day and that they would be 

contacted by e-mail or phone in case of no recorded training sessions on three consecutive 

days. To further enhance training commitment, they received weekly motivational e-mails 

during the training phases.  

Training motivation  and affect. In the training introductory session and at T2, 

participants completed the Questionnaire on Current Motivation (QCM; Rheinberg, 

Vollmeyer, & Burns, 2001), measuring four factors of achievement motivation in learning 

situations: interest, challenge, expected success, and performance anxiety. Its 18 items are 

rated on a 7-point Likert scale (1 = ñdoes not applyò; 7 = ñapplies exactlyò). At the beginning 

of each training session, participants rated their current training motivation on a 5-point Likert 

scale (1 = ñvery motivatedò, 5 = ñnot at all motivatedò) and their current arousal and 

emotional valence on 9-point Likert scales using self-assessment manikins (Bradley & Lang, 

1994; arousal:1 = ñcalm, relaxedò, 9 = ñexcited, stimulatedò; valence: 1 = ñannoyed, sadò, 9 = 

òhappy, hopefulò).  

Training tasks. Both training interventions included 30 sessions lasting about 30-45 

min. In each session, participants practiced three different training tasks with 10 trials each. 

The order of the tasks was counterbalanced across training sessions and the same for all 

participants. In the beginning of each training task, participants could complete an optional 

practice trial. In both interventions, the object stimuli were randomly drawn from the same 

task-specific databases, with the restriction for the OLM training tasks that no object was 

repeated within one training session. Feedback on individual performance was provided at the 

end of each trial, task, and session. 

OLM training. In all three training tasks, cued recall for object-location associations 

was practiced. Each trial consisted of an encoding phase in which n associations had to be 
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encoded, a 20-s distractor task (to ensure that the encoded object-location associations could 

not be held in short-term memory), and a retrieval phase. Task difficulty was adapted to 

individual performance by increasing or decreasing n of to-be-encoded object-location 

associations by one. Participants started the first session on the lowest level of difficulty with 

two object-location associations. The highest possible level of difficulty required encoding of 

21 object-location associations. Individual performance was assessed for each task separately. 

Task difficulty was increased in the next training session if performance was greater than 70 

% and was decreased if performance was below 50 %. Feedback was given on the percentage 

of correctly recalled associations and the level of difficulty achieved. Level of difficulty 

served as performance measure.  

Object-location task. Each of n objects was presented sequentially in a 5-x-6 grid for 4 s 

followed by an ISI of 0.5 s. Objects were drawn from a database of 245 colored drawings of 

everyday objects (Rossion & Pourtois, 2004; Snodgrass & Vanderwart, 1980). In the 

distractor task, simple arithmetic equations were displayed serially. Participants had to 

indicate by key presses whether they were correct or not. During the retrieval phase, each of 

the previously encoded objects was presented sequentially below the empty grid. Participants 

had to indicate by mouse click in which cell the object had been presented during encoding. 

Each object was presented until a cell in the grid was clicked on or for maximally 6 s. 

Shape-location task. Twenty-nine self-created geometrical shapes in nine different 

colors (resulting in 261 different shapes) served as object stimuli. During encoding, n shapes 

were presented simultaneously in a 6-x-6 grid. Display duration was set to n x 3 s (e.g., 6 s at 

the lowest level of difficulty with two shapes). In the subsequent distractor task, 10 words had 

to be selected in alphabetical order with mouse clicks. During the retrieval phase, the 

previously encoded shapes were presented left and right to the empty grid. Participants had to 

click with the mouse on each shape and then on the cell in which they were presented during 
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encoding. The retrieval phase ended when all shapes had been assigned to cells or after a 

maximum of n x 6 s (e.g., 12 s at the lowest level of difficulty).  

Landmark-location task. This task was the same as the shape-location task with three 

exceptions. First, object stimuli were drawn from a database of 261 photographs of real-world 

buildings (retrieved from the internet, photographs of highly salient or famous buildings were 

excluded). Second, the 6-x-6 grid was superimposed by a different self-created city map in 

each training session. The 30 maps consisted of patterns of white lines on a gray background. 

Third, in the distractor task, 10 two-digit numbers had to be selected in the order of their 

magnitude.  

Control training. Each of the control training tasks was matched to one of the OLM 

training tasks in terms of stimulus material and distractor task. Instead of an encoding phase 

and a retrieval phase as in an OLM training task trial, in a control training task trial the 

distractor task separated two phases of a visual perception task. The duration of these visual 

perception phases was determined by the duration of the encoding and retrieval phases of the 

same trial in the corresponding OLM training task in the same training session of the 

individually matched OLM training participant.2 Within both visual perception phases, after 

participants had solved one item, the next item was presented until phase duration expired. 

Participants had to solve the presented items as quickly as possible. Feedback was given on 

the number of completed items, the number and percentage of correct responses, and the 

average reaction time. Proportion of correctly solved items and average reaction time served 

as performance measures. 

Object-perception task. Two 1-x-10 grids filled with objects were presented, one below 

the other. Participants had to click with the mouse on the one object that differed between the 

two grids.  

                                                 
2 Four control group participants had to be matched to other experimental training participants during 

the course of the training because one experimental training participant dropped out and three experimental 

training participants lagged behind in completed training sessions because of computer problems. 
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Shape-perception task. A target shape was presented on top of the 6-x-6 grid which was 

filled with 36 shapes. Participants had to click with the mouse on the target shape in the grid. 

Landmark-perception task. The procedure was the same as for the shape-perception 

task, except that a target building was presented on top of city maps filled with 21 buildings.  

Transfer 

We administered five spatial episodic memory tasks (near transfer), three verbal 

episodic memory tasks (intermediate transfer), six reasoning tasks (far transfer), and three 

visual perception tasks (control tasks). All transfer tasks differed in stimulus material and test 

format from the training tasks. Task order was counterbalanced across the four abilities and 

the same from T1 to T4. At the end of the cognitive assessments, participants additionally 

completed several questionnaires (see Supplemental Online Materials).  

To assess spatial and verbal episodic memory, we used the three respective subtasks of 

the paper-and-pencil Berlin Intelligence Structure Test Form 4 (BIS-4, Jäger, Süss, & 

Beauducel, 1997). For spatial episodic memory, we additionally administered two 

computerized tasks. Reasoning was measured with the five visuo-spatial reasoning subtasks 

of the BIS-4 and with a short version of the Ravenôs Advanced Progressive Matrices (Arthur 

& Day, 1994). Visual perception skills were assessed with the three paper-and-pencil tasks 

representing the factor perceptual speed from the Kit of Factor-Referenced Cognitive Tests 

(Ekstrom, French, Harman, & Dermen, 1976). Table 2 lists short descriptions of all 

administered tests.  
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Table 2 

Descriptions of the Transfer Tasks 

Task Description 

 Spatial Episodic Memory (Near Transfer) 

BIS-4 Orientation 
Memory 

Encode the locations of 27 black geometrical shapes representing buildings on a fictitious city map within 90 s and then 
mark the encoded locations on an uncolored copy of the map within 90 s. 

BIS-4 Remembering 
Routes 

Encode a route with 30 segments on a fictitious city map within 30 s and then reproduce the route on a copy of the map 
without this route within 40 s.  

BIS-4 Company Logos 
Encode 20 company logos presented in differently shaped frames within 60 s and then mark the shape that had framed each 
logo out of 4 provided shapes within 90 s.  

OLM Pairsa 

Encode 15 object-location association pairs sequentially presented in a 5 x 6 grid. The first object will be presented alone 
for 1 s and then together with the second object for 3 s, followed by an ISI of 3 s. After a 30-s distractor task (adapted 
version of the Digit Symbol Substitution subtest of the HAWIE-R; Tewes, 1991), one object-location association of a pair 
will be displayed in the 5 x 6 grid. Indicate the cell in which the second object had appeared during encoding by mouse 
click within 4 s. Two learning trials will be conducted.  

OLM Recognitionb 

Encode 6 object-location associations presented sequentially (3 s each) in a 5 x 5 grid. After a distractor task (a 1-back task 
with arrows pointing in 8 possible directions) with random duration between 12-18 s, indicate by pressing two buttons 
whether the again sequentially presented objects (3 s each) are displayed in their original grid cells (50 %) or not. After a 
visual fixation phase with random duration between 9-15 s, complete the next trial (two runs with 12 trials each).  

 Verbal Memory (Intermediate Transfer) 

BIS-4 Meaningful Text Encode a text within 60 s and then answer questions about 22 details from the text within 120 s. 

BIS-4 Remembering 
Words 

Encode a list of 20 nouns within 40 s and then recall them in written form within 90 s. 

BIS-4 Fantasy 
Language 

Encode 20 word pairs, each consisting of one real and one nonsense word, within 60 s and then select for each presented 
real word the encoded out of five provided nonsense words within 75 s. 

 Reasoning (Far Transfer) 

BIS-4 Analogies 
Determine how 2 shapes relate to one another. Select the shape which has the same relationship to a target shape out of 5 
provided shapes. Solve as many out of 8 items as possible within 105 s.  
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BIS-4 Charkov 
Complete series of patterns that are governed by a certain rule by adding 2 patterns to the first 3 provided patterns. Solve as 
many out of 6 items as possible within 180 s.   

BIS-4 Bongard 
Deduct from 2 provided groups with 6 patterns each to which group 3 additional patterns belong. Solve as many out of 5 
items as possible within 130 s.  

BIS-4 Shape Selection 
Decide which of 5 provided large shapes can be built from 3 to 4 small pieces of a shape. Solve as many out of 6 items as 
possible within 150 s. 

BIS-4 Transaction 
Decide which out of 5 provided three-dimensional figures can be built from a folding template. Solve as many out of 5 
items as possible within 110 s.  

RAPM Complete a spatial logical pattern by choosing the correct out of 8 provided figures. Solve 12 items without time constraint. 

 Visual Perception (Control Measure) 

KIT Finding Aôs Mark as many of 200 words containing the letter Ăañ as possible out of a total of 820 words within 120 s (two trials).  

KIT Number 
Comparison 

Compare 48 pairs of 3- to 13-digit numbers and mark as many pairs with different digits as possible within 90 s (two trials).  

KIT Identical Pictures 
Mark the geometrical figure or picture out of 5 presented ones that is identical to a target figure or picture. Solve as many 
of 48 items as possible within 90 s (two trials).  

Note. The number of correctly remembered or correctly solved items served as outcome measure, except for OLM Recognition (mean number of 

recognition hits across the two runs with 72 items each), Number Comparison, and Identical Pictures (difference between the number of correctly 

marked and incorrectly marked items). BIS-4 = Berlin Intelligence Structure Test Form 4. RAPM = Ravenôs Advanced Progressive Matrices. 

KIT = Kit of Factor-Referenced Cognitive Tests. 
a Rasch, Büchel, Gais, & Born (2007). 
b This task was conducted in the MRI scanner while recording task-related brain activity (fMRI). The object stimuli were drawn from the Bank of 

Standardized Stimuli (BOSS; Brodeur, Dionne-Dostie, Montreuil, & Lepage, 2010). The objects were comparable in object identity and 

familiarity ratings across the two runs.  
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Analysis 

We replaced outliers in the transfer data with the median of the raw scores plus or minus 

three times the median absolute deviation (MAD, cf. Leys, Ley, Klein, Bernard, & Licata, 

2013). Next, outlier-corrected raw data were z-transformed separately for T1 and for T2 

through T4. Training motivation ratings were recoded so that higher ratings represent higher 

motivation. 

Due to strong floor effects and no variance at T1 or T1 and T3 respectively, we 

excluded the Charkov (T1: M = 0, SD = 0) and Bongard (T1 and T3: M = 1, SD = 0) 

reasoning tasks from further analyses. To ensure that the remaining transfer tasks loaded on 

the hypothesized cognitive ability factor, we ran a confirmatory factor analysis (maximum 

likelihood extraction with oblique rotation) with a fixed number of four factors. The Kaiser-

Meyer-Olkin measure verified the sampling adequacy for the analysis (KMO = .67). Bartlettôs 

test of sphericity indicated that correlations between individual tests were sufficiently large 

(c2(105) = 256.33, p < .001) and that the four factors with eigenvalues above Kaiserôs 

criterion of 1 explained 57.36 % of the variance. Two spatial episodic memory task loaded 

most strongly on other factors (OLM Pairs on verbal episodic memory, r = .49; Company 

Logos on visual perception, r = .59) instead of spatial episodic memory (OLM Pairs: r = .24; 

Company Logos: r = .47) and were therefore excluded from further analyses. Spatial episodic 

memory was thus finally represented by three tasks (Remembering Routes, Orientation 

Memory, OLM Recognition), verbal episodic memory by three tasks (Meaningful Text, 

Remembering Words, Fantasy Language), reasoning by four tasks (Analogies, Shape 

Selection, Transaction, Ravenôs Advanced Progressive Matrices), and visual perception by 

three tasks (Finding Aôs, Number Comparison, Identical Pictures).  

Baseline group comparability regarding demographic, descriptive, and screening 

measures and transfer abilities, and group differences in the four subscales of the QCM across 
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T1 and T2 were analyzed with MANOVAs. Group differences in the trajectories of training 

motivation, arousal, and valence ratings, and within-group trajectories in training task 

performance across the 30 training sessions were analyzed with ANOVAs. Transfer effects 

were analyzed with linear mixed-effects (LME) models. LME models were fit in R (R Core 

Team, 2014) with the package ñlme4ò (Bates, Maechler, Bolker, & Walker, 2014). The 

degrees of freedom were estimated using Kenward-Roger approximation with the package 

ñpbkrtestò (Halekoh & Højsgaard, 2014) to derive information about the significance of the 

predictors. MAD computations were done in MATLAB R2013b (Mathworks Inc., MA, 

USA). All other analyses were conducted with SPSS 20 (http://www.spss.com). The alpha 

level was set at .05 for all analyses. 

Results 

Missing Data 

Five participants completed only 27 to 29 sessions (experimental group: one 29, one 27; 

active control group: two 29, one 28) because of technical and scheduling problems. These 

participants were excluded from the training measure analyses. Two participants of the 

experimental group completed one additional session (one in the second training phase, one in 

the follow-up period).  

Transfer assessments were completed by all 67 participants with the exception of two 

participants (one of each group) who did not take part in follow-up testing because of medical 

reasons. The three completed cognitive assessments of these participants were included in the 

analyses. 

Baseline Group Comparability  

Demographics, descriptive, and screening measures. We conducted a MANOVA 

with group (OLM vs. active control) as between-subjects factor and all demographic, 

descriptive, and screening measures (except gender) as dependent variables. The effect of 



TRANSFER AFTER OBJECT-LOCATION MEMORY TRAINING  24 

group was not significant, F(16, 50) = 0.79, p = .686, ɖp
2 =  0.20. Table 1 lists the results of 

the planned pairwise group comparisons for each of these measures and of the chi-square test 

for gender, none of which were significant.  

Transfer abilities. Table 3 lists the descriptive statistics for each transfer task and 

group from T1 to T4. To determine baseline group comparability, we conducted MANOVAs 

for each of the four abilities with group as between-subjects factor (OLM vs. active control) 

and with performance in the tasks measuring each ability at T1 as dependent variables. The 

effect of group was not significant for spatial episodic memory (F(3, 63) = 0.55, p = 

.647, ɖp
2 = 0.03), reasoning (F(4, 62) = 1.70, p = .162, ɖp

2 = 0.10), and visual perception, F(3, 

63) = 0.75, p = .527, ɖp
2 = 0.03. However, for verbal episodic memory, the effect of group 

was significant, F(3, 63) = 4.36, p = .007, ɖp
2 = 0.17. Planned pairwise group comparisons on 

the level of single tasks revealed that the OLM group showed significant better baseline 

performance than the active control group in the Fantasy Language task, Mdiff = 1.89, p = .010. 

Without this task, the effect of group on verbal episodic memory was no longer significant, 

F(2, 64) = 2.00, p = .144, ɖp
2 = 0.06. We therefore excluded this task from further analyses. 

The pattern of results of the LME models on transfer effects was identical when this task was 

included. 
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Table 3  

Mean Performance in the Transfer Tasks and Mean Ratings on the Subscales of the Questionnaire on Current Motivation as a Function of 

Training Group and Time of Assessment 

  OLM  Active Control 
Task Max T1 T2 T3 T4  T1 T2 T3 T4 

Spatial Episodic Memory 
Orientation Memory  27 11.69 (3.50) 12.67 (3.23) 15.28 (4.23) 14.40 (3.41)  11.81 (3.61) 12.74 (3.28) 13.68 (3.40) 13.83 (3.40) 
Remembering Routes 30 12.11 (4.36) 12.97 (3.85) 13.36 (5.07) 14.66 (4.96)  10.94 (4.36) 10.87 (3.86) 14.23 (4.86) 12.70 (3.79) 
OLM Recognition 72 57.03 (4.71) 60.74 (4.19) 61.85 (4.05) 63.07 (3.97)  57.45 (5.21) 59.31 (6.47) 61.32 (4.23) 59.91 (4.61) 

Verbal Episodic Memory 
Meaningful Text 22 6.89 (2.96) 8.44 (3.35) 10.61 (3.21) 9.89 (3.42)  7.23 (2.63) 9.29 (2.95) 10.16 (2.91) 9.73 (2.96) 
Remembering Words 20 4.94 (1.67) 6.39 (1.87) 6.97 (2.05) 7.11 (1.91)  4.32 (1.87) 5.55 (1.93) 6.61 (1.93) 6.03 (1.65) 
Fantasy Language 20 8.28 (3.23) 8.75 (3.95) 11.11 (3.54) 11.34 (3.90)  6.39 (2.53) 7.84 (3.43) 9.55 (4.00) 10.33 (3.09) 

Reasoning 
Analogies 8 1.53 (1.30) 2.03 (1.56) 2.67 (1.55) 2.57 (1.75)  1.42 (1.29) 1.39 (1.17) 1.94 (1.36) 1.67 (1.24) 
Shape Selection 6 2.17 (1.38) 2.33 (1.62) 2.39 (1.23) 2.49 (1.62)  1.55 (1.18) 2.00 (1.21) 2.32 (1.40) 2.00 (1.49) 
Transaction 5 1.06 (0.92) 1.47 (1.18) 1.61 (1.15) 1.43 (0.98)  0.97 (0.80) 1.10 (0.94) 1.06 (1.15) 1.20 (1.03) 
RAPM 12 5.81 (2.41) 6.25 (2.29) 6.28 (2.26) 6.77 (2.62)  4.68 (2.65) 5.35 (2.36) 5.35 (2.27) 5.60 (2.77) 

Visual Perception 
Finding Aôs 200 56.50 (15.75) 62.08 (16.92) 62.78 (19.07) 61.51 (16.50)  55.97 (14.23) 60.90 (15.60) 64.71 (18.03) 63.47 (13.66) 
Number Comparison 96 18.81 (5.26) 18.97 (5.36) 19.22 (4.94) 17.86 (6.86)  17.26 (5.92) 18.39 (6.41) 18.16 (6.07) 14.90 (10.89) 
Identical Pictures 96 45.47 (12.07) 47.31 (11.55) 49.53 (12.15) 47.51 (13.78)  46.84 (8.02) 49.74 (8.49) 49.65 (9.07) 47.30 (8.15) 

Questionnaire on Current Motivation 
Interest 35 32.03 (3.23) 29.89 (5.60)    31.90 (3.62) 31.00 (3.61)   
Challenge 28 25.56 (2.38) 24.56 (2.91)    24.58 (2.51) 23.03 (3.78)   
Expected Success 28 23.19 (2.96) 22.64 (4.46)    22.68 (3.28) 20.90 (4.21)   
Performance Anxiety 35 13.17 (5.25) 14.33 (7.23)    11.68 (6.27) 14.39 (6.97)   

Note. Means are provided alongside their standard deviations in parentheses. The Questionnaire on Current Motivation was administered only at 

T1 and T2. RAPM = Ravenôs Advanced Progressive Matrices. 
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Training Measures 

Training motivation and affect. Table 3 displays the descriptive statistics for the four 

QCM subscales of each group at T1 and T2. Across T1 and T2, both groups regarded their 

interest, challenge, and expectation to complete the training regime successfully as high and 

their performance anxiety as moderate. We conducted a MANOVA with group (OLM vs. 

active control) as between-subjects factor, time (T1, T2) as within-subject factor, and the four 

QCM subscales as dependent variables. The main effect of group was marginally significant, 

F(4, 62) = 2.21, p = .078, ɖp
2 = 0.133. There was a significant main effect of time (F(4, 62) = 

6.99, p < .001, ɖp
2 = 0.31), reflecting decreasing achievement motivation from T1 to T2, but 

no significant group x time interaction, F(4, 62) = 1.60, p = .185, ɖp
2 = 0.09.  

Figure 2 displays the trajectories of training motivation, arousal, and valence ratings in 

each group. Across the 30 training sessions, motivation was very high, arousal moderate, and 

emotional valence very positive in both groups. We conducted mixed ANOVAs with group as 

between-subjects factor (OLM vs. active control), time (30 sessions) as within-subject factor, 

and motivation, arousal, and valence ratings as separate dependent variables. Consistent 

across measures, the main effect of group was not significant (Fs Ò 0.43, ps Ó .513). The main 

effect of time was significant for arousal (F(29, 1740) = 3.04, p < .001, ɖp
2 = 0.05) and 

valence (F(29, 1740) = 1.74, p = .041, ɖp
2 = 0.03), but was only marginally significant for 

motivation, F(29, 1740) = 1.55, p = .098, ɖp
2 = 0.03. Although the group x session interaction 

was significant for motivation (F(29, 1740) = 1.91, p = .027, ɖp
2 = 0.03) and valence (F(29, 

1740) = 2.44, p = .002, ɖp
2 = 0.04), it was not for arousal, F(29, 1740) = 0.24, p = .625, ɖp

2 < 

0.01. Figure 2 illustrates that motivation and valence ratings were relatively stable across 

training in the OLM training group, but followed a slight U-shaped function in the control 

                                                 
3 Follow-up ANOVAs on the four subscales revealed that the groups differed only in challenge across 

T1 and T2 (F(1, 65) = 4.15, p = .046, ɖp
2 = 0.06; other: Fs Ò 2.35, ps Ó .130), with the OLM group feeling more 

challenged than the active control group. However, the absolute differences in challenge ratings between the 

groups were only very small and, thus, hardly practical meaningful (about 1-1.5 out of maximally 24 points). 
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group. Trend analyses confirmed significant medium linear trends (motivation: F(1, 27) = 

9.63, p = .004, ɖp
2 = 0.26; valence: F(1, 27) = 5.06, p = .033, ɖp

2 = 0.16) and large quadratic 

trends (motivation: F(1, 27) = 10.72, p = .003, ɖp
2 = 0.28; valence: F(1, 27) = 11.14, p = .002, 

ɖp
2 = 0.29) for the control group, but not for the OLM training group (Fs Ò 2.11, ps Ó . 155). 

 
Figure 2. Mean ratings of A) motivation (scale: 1-5), B) arousal (scale: 1-9), and C) valence 

(scale: 1-9) of the two experimental groups in the 30 training sessions. Error bars represent 

standard errors of the mean (SEM). 
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Training performance . Figure 3 displays mean level of difficulty in the OLM training 

tasks and mean proportion of correctly solved items and mean reaction time in the visual 

perception control training tasks for each training session. We evaluated whether performance 

changed systematically with linear contrasts of session for each measure (see Table 4 for the 

descriptive statistics and results). We found significant large linear trends indicating 

increasing performance across sessions for all measures in both groups. 
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Figure 3. A) Mean level of difficulty in the three OLM training tasks in the 30 training 

sessions. B) Mean proportion of correctly solved items and C) mean reaction time (s) in the 

three active control training tasks in the 30 training sessions. Error bars represent standard 

errors of the mean (SEM). 

 

Table 4 

Linear Contrast Analyses for Performance Measures of the OLM and of the Control Training 

Tasks 

Training Task Fa p ɖp
2 Session 1 Session 30 
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M (SD) M (SD) 

OLM Training Tasks: Level of Difficulty  

Object-Location 71.20 <.001 0.68 1 (0) 10.32 (5.66) 

Shape-Location 78.02 <.001 0.70 1 (0) 5.26 (2.97) 

Landmark-Location 40.45 <.001 0.55 1 (0) 4.82 (3.25) 

Control Training Tasks: Proportion of Accuracy 

Object-Perception 18.86 <.001 0.41 0.99 (0.02) 1.00 (<0.01) 

Shape-Perception 14.30 .001 0.35 0.99 (0.03) 1.00 (0.01) 

Landmark-Perception 37.71 <.001 0.58 0.97 (0.03) 0.99 (0.01) 

Control Training Tasks: Average Item Reaction Time 

Object-Perception 270.30 <.001 0.91 2.56 (0.40) 1.89 (0.27) 

Shape-Perception 48.70 <.001 0.64 1.88 (0.37) 1.59 (0.26) 

Landmark-Perception 87.05 <.001 0.76 2.68 (0.43) 2.31 (0.40) 

Note. Significant p-values are printed bold.  
a OLM training group: F(1, 33), active control group: F(1, 27). 

 

Transfer Effects 

 Figure 4 illustrates the trajectory of mean effect sizes (Cohenôs d) for performance gains 

in the administered tasks for each of the transfer abilities in each experimental group from T1 

to T4. LME models were used to evaluate training- induced transfer gains on the level of 

cognitive abilities (i.e., spatial episodic memory, verbal episodic memory, reasoning, visual 

perception) rather than on the level of single tasks (cf. von Bastian & Oberauer, 2013). One 

advantage of LME models over more traditional analyses such as ANOVAs is that LME 

models can simultaneously account for multiple sources of variance in the data (for a more 

detailed discussion see Baayen, Davidson, & Bates, 2008). These sources of variance can be 

specified as fixed effects (e.g., experimental conditions) or random effects (accounting for the 

variability in sampling of individuals or tasks).  
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Figure 4. Trajectory of mean effect sizes (Cohenôs d) of performance gains averaged across 

the tasks measuring each of the four transfer abilities from T1 to T4 for the two experimental 

groups. A) Spatial episodic memory (near transfer). B) Verbal episodic memory (intermediate 

transfer). C) Reasoning (far transfer). D) Visual perception (control for visual perception 

control training). Error bars represent 95% confidence intervals. Effect sizes for repeated 

measures and their confidence intervals were calculated using ESCI (Cumming, 2011). 

 

As fixed-effects predictors, we entered group (OLM vs. active control) coded as simple 

contrast, time of assessment (T2, T3, and T4) coded as sliding contrast (Venables & Ripley, 

2002), and baseline performance as centered continuous covariate. As crossed-random effects 

(Baayen, et al., 2008), we entered subject to account for random variability between 

individuals, and task to account for random variability between different tasks measuring the 

same ability. Following recent recommendations (Barr, Levy, Scheepers, & Tily, 2013), we 

attempted to fit the design-driven maximal random-effects structure with random effects for 

both intercepts (i.e., random variation around the overall mean of the dependent variable) and 

slopes (i.e., random variation in the size of effects of all predictors). As models including a 
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random effect of task on the slope of group did not converge, the final models included only 

random effects of both subject and task on the intercept and on the slopes of time of 

assessment. Models including random effects only on the intercept yielded qualitatively the 

same results. Results of the final model are summarized in Tables 5 (fixed effects) and 6 

(random effects). 

 

Table 5 

Parameter Estimates for Fixed Effects Related to the Transfer Measures 

Predictor B SE t p 

Spatial Episodic Memory 

Intercept -0.01 0.05 -0.10 .922 

Baseline 0.43 0.04 10.99 < .001 

Groupa 0.24 0.11 2.28 .030 

T3b 0.41 0.08 5.25 < .001 

T4b -0.04 0.08 -0.49 .629 

Groupa x T3b -0.13 0.16 -0.80 .429 

Groupa x T4b 0.29 0.16 1.85 .075 

Verbal Episodic Memory 

Intercept 0.00 0.06 -0.04 .968 

Baseline 0.48 0.05 9.65 .003 

Groupa 0.13 0.13 1.04 .376 

T3b 0.45 0.08 5.34 .014 

T4b -0.14 0.08 -1.69 .193 

Groupa x T3b 0.08 0.17 0.47 .670 

Groupa x T4b 0.15 0.17 0.89 .441 

Reasoning 

Intercept -0.01 0.06 -0.19 .850 

Baseline 0.39 0.03 12.12 < .001 

Groupa 0.26 0.12 2.20 .031 

T3b 0.14 0.09 1.67 .100 

T4b -0.02 0.07 -0.32 .746 

Groupa x T3b 0.01 0.12 0.09 .929 

Groupa x T4b 0.05 0.12 0.42 .678 

Visual Perception 

Intercept 0.00 0.04 0.11 .915 

Baseline 0.69 0.03 21.64 < .001 

Groupa -0.01 0.08 -0.14 .889 

T3b 0.08 0.07 1.12 .275 

T4b -0.19 0.08 -2.36 .028 

Groupa x T3b 0.03 0.13 0.25 .805 

Groupa x T4b 0.10 0.13 0.76 .458 
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Note. Significant p-values are printed bold.  
aOLM group contrasted against the active control group. 
bContrasted against the preceding time of assessment.  

 

Table 6 

Parameter Estimates for the Random Effects Related to the Transfer Measures 

 SD 
Random Effect Spatial Episodic 

Memory 
Verbal Episodic  

Memory 
Reasoning Visual 

Perception 

Subject     
Intercept 0.34 0.43 0.43 0.27 
T3a 0.06 0.13 0.04 0.11 
T4a < 0.01 0.09 0.11 0.06 

Task     
Intercept 0.00 0.00 0.00 0.00 
T3a < 0.01 < 0.01 0.13 0.05 
T4a < 0.01 < 0.01 0.07 0.08 

Residual 0.78 0.67 0.68 0.62 
a Contrasted against the preceding time of assessment.  

 

Spatial episodic memory (near transfer). The significant effect of the baseline 

covariate (b = 0.43, p < .001) reflects that performance at T2-T4 is positively correlated with 

baseline performance. The predictor for the group contrast was significant (b = 0.24, p = .030) 

over and above this relationship, indicating that, across T2-T4, the OLM group performed 

better in the spatial episodic memory tasks than the active control. The effect of T3 contrasted 

against T2 was also significant (b = 0.41, p < .001), which means that performance was - 

irrespective of group membership - better at T3 than at T2. After T3, performance did not 

change significantly.  

Verbal episodic memory (intermediate transfer). Baseline performance significantly 

predicted performance across T2-T4 (b = 0.48, p = .003). Performance increased irrespective 

of group membership significantly from T2 to T3 (b = 0.45, p = .014). No significant group 

differences and no significant group x time interactions were observed.  

Reasoning (far transfer) . Over and above the significant effect of baseline 

performance (b = 0.39, p < .001), the OLM group performed significantly better than the 
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active control (b = 0.26, p = .031) across T2-T4. Neither the effects of time nor the group x 

time interactions reached significance, indicating that performance of both groups was 

relatively stable across T2-T4.  

Visual perception (control). Baseline performance significantly predicted performance 

across T2-T4 (b = 0.69, p < .001). There was a significant decrease in performance 

irrespective of group membership from T3 to T4 (b = -0.19, p = .028). No significant group 

differences and no significant group x time interactions were observed. 

Taken together, the results suggested that the OLM group improved more than the 

active control in spatial episodic memory (near transfer) and reasoning (far transfer) across T2 

through T4, but not in verbal episodic memory (intermediate transfer). There were no group 

differences in visual perception (control) performance across T2 to T4. Whereas general 

additional performance increases were observed from T2 to T3 in both spatial and verbal 

episodic memory, this was not the case for reasoning (performance remained relatively stable 

across T2-T4) and visual perception (performance decreased from T3 to T4). However, none 

of the group x time interactions (i.e., T3 vs. T2 or T4 vs. T3) were significant, indicating that 

change in performance was similar for both training groups.  

Discussion 

The aim of this study was to investigate whether process-based training of the ability to 

encode and retrieve associations between simultaneously processed information units from 

long-term memory (operationalized by OLM) in healthy older adults improves performance in 

the trained tasks and induces enduring transfer effects to episodic memory and reasoning. To 

evaluate transfer effects, we included an active control group completing a visual perception 

training intervention with the same stimuli and duration as the OLM training intervention, and 

administered a cognitive test battery before, in the middle (after 15 training sessions), at the 

end (after 30 training sessions), and four months after training. The test battery included tests 
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assessing spatial episodic memory, verbal episodic memory, and reasoning, which according 

to the transfer framework by Noack et al. (2009) represent near, intermediate, and far transfer. 

In addition, to demonstrate discriminant validity, visual perception tests were administered. 

Transfer effects over the course of training until follow-up were analyzed on the level of 

cognitive abilities indicated by at least two heterogeneous tests with linear mixed effect 

models. We predicted that process-based OLM training would lead to large and linear 

performance improvements in the trained tasks. According to the associative deficit 

hypothesis and to findings showing that associative episodic memory contributes to reasoning 

performance, OLM training could potentially induce near, intermediate, and far transfer, but 

the few available studies on process-based episodic memory training in older adults generally 

failed to demonstrate any transfer. We did not expect OLM training to yield transfer to visual 

perception and the visual perception control intervention, if at all, to induce near transfer to 

visual perception only. 

Training Gains 

As predicted, performance increases in the trained OLM tasks across the 30 training 

sessions were large and linear, indicating room for even further improvement with longer 

training in all three training tasks. Our findings are in line with previous studies on process-

based episodic memory training (Jennings & Jacoby, 2003; Jennings et al., 2005; Lövdén et 

al, 2012; Stamenova et al., 2014) and those on process-based working memory and executive 

function training in healthy older adults (Karbach & Verhaeghen, 2014). Our results thus 

demonstrate that older adultsô performance in encoding and retrieving visuo-spatial 

associations from long-term memory can be successfully improved by process-based training.  

Transfer Effects 

We found that process-based OLM training induced transfer to spatial episodic memory 

and reasoning, but not to verbal episodic memory. Thus, according to the transfer framework 
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by Noack et al. (2009), it yielded near and far, but no intermediate transfer effects. From a 

theoretical perspective, it is unclear why we observed this pattern of transfer. The ability to 

encode and retrieve associations between simultaneously processed information units from 

long-term memory has been shown to be impaired in old age across all types of material (Old 

& Naveh-Benjamin, 2008) and, according to the associative deficit hypothesis (Naveh-

Benjamin, 2000), underlies episodic memory deficits of older adults in general. However, 

considering the finally included indicators for the three transfer abilities, our results suggest 

both domain- and process-specificity of OLM training. More specifically, successful 

performance in the OLM training tasks and the spatial episodic memory and reasoning tasks 

depended on the encoding and retrieval of self-generated associations between simultaneously 

processed visuo-spatial information units from long-term memory. In contrast, the finally 

included verbal episodic memory tasks primarily required processing of semantically related 

verbal information. Indeed, associative memory processes seem to contribute little to 

performance in episodic memory tasks with semantically related verbal information such as 

texts or word lists (see Saling, 2009), with several studies reporting reduced or even non-

existing performance decrements in older adults for semantically related in comparison to 

unrelated word pairs (e.g., Badham, Estes, & Maylor, 2012; Naveh-Benjamin, Craik, Guez, & 

Kreuger, 2005; Patterson, Light, Van Ocker, & Olfman, 2009). Consequently, reasoning 

rather than verbal episodic memory transfer tasks overlapped to a greater degree with the 

OLM training tasks in terms of material and required cognitive processes, possibly explaining 

why we found transfer to reasoning, but not to verbal episodic memory. Transfer of OLM 

training may more likely occur for verbal episodic memory if measured by tasks requiring 

associative memory processes, and less likely occur for reasoning if assessed by verbal tasks. 

There are two further, potentially complementary explanations for the observed pattern 

of transfer. First, different associative memory processes may be involved in OLM, spatial 
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episodic memory, and spatial reasoning than in verbal episodic memory. Mayes, Montaldi, 

and Migo (2007) suggested that there are functional differences between remembering 

between-domain and within-domain associations. Lesion and neuroimaging studies indicate 

that different neural networks support these two types of memory. Process-based OLM 

training practices encoding and retrieving of between-domain associations (associations 

between visual (objects) and spatial (locations) information). Hence, it should yield transfer to 

abilities which involve remembering between-domain associations such as spatial episodic 

memory or spatial reasoning, but not to abilities which require remembering within-domain 

associations, including verbal associative episodic memory or verbal reasoning.  

Second, because the correct retrieval of object-location associations depends on the 

retention of both objects and locations in memory (Postma et al., 2008), OLM training 

practices also memory for objects and memory for locations alongside associative memory. 

Object memory and location memory are also involved in spatial episodic memory, but not in 

verbal episodic memory. Moreover, object memory and location memory have been shown to 

strongly correlate with reasoning, even when measured by verbal tasks only (Siedlecki & 

Salthouse, 2014). Consequently, transfer of process-based OLM training to verbal reasoning 

may be even more likely than transfer to verbal episodic memory. 

The potential explanations outlined above should be tested in future studies. For 

example, one could investigate the transfer effects of process-based OLM training on verbal 

episodic memory tasks with semantically related and unrelated information or on verbal and 

spatial reasoning tasks. Furthermore, one could compare transfer effects of memory training 

for within-domain versus between-domain associations, or transfer effects of OLM training 

versus object memory or location memory training.  

Although performance gains in accuracy and speed in the visual perception control 

training tasks were linear and large across the training period, we found no significant 
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differences between the training groups in transfer to visual perception. In the visual 

perception transfer tasks, different stimuli (words, numbers, geometrical figures) were 

presented than in the visual perception and OLM training regimes. Thus, our results indicate 

material-specific effects of visual perception training, which is in line with the limited 

research on visual perception training in older adults (Andersen, Ni, Bower, & Watanabe, 

2010). On the other hand, the absent transfer of OLM training to visual perception implies 

that the positive transfer of this intervention to spatial episodic memory and reasoning was not 

driven by improvements in visual perception, but in associative memory.  

Process-based OLM training seems to lead to lasting improvements in spatial episodic 

memory and reasoning ability in older adults, given that transfer effects to these abilities 

remained stable from post-training to the four-month follow-up. 

Our findings stand out from the few prior studies on process-based episodic memory 

training interventions in healthy older adults (Jennings et al., 2005; Lövdén et al, 2012; 

Stamenova et al., 2014) which have generally failed to demonstrate transfer to untrained 

cognitive tasks, including those assessing episodic memory and reasoning. An advantage of 

our study was that we evaluated transfer effects on the level of cognitive abilities rather than 

with single cognitive tasks. Moreover, in contrast to previous process-based episodic memory 

training studies, the selection of trained and assessed transfer cognitive abilities was based on 

clear theoretical assumptions and empirical evidence on their relationships to one another. 

Finally, our intervention may have targeted episodic memory processes more effectively than 

previous interventions.  

Limitations  

A limitation regarding the performance gains in the trained OLM tasks is that we do not 

know which level of difficulty the participants were able to complete at baseline. Because all 

participants started training on a relatively low level of difficulty, we cannot disentangle 
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whether their performance gains in the trained tasks reflect achievement of their true initial 

capacity or improvements beyond their initial capacity. To avoid this confound, in other 

studies criterion tasks (i.e., test versions of the experimental training tasks with medium 

difficulty) were administered before and after training (e.g., Brehmer, Westerberg, & 

Bäckman, 2012; Lövdén et al, 2012; von Bastian & Eschen, 2016; von Bastian, Langer, 

Jäncke, & Oberauer, 2013). Another possibility would be to provide participants with an 

individual initial level of difficulty reflecting their baseline capacity. Future studies should 

therefore follow one of the above approaches to capture performance gains beyond initial 

capacity.  

One limitation to our transfer results is that, in contrast to OLM training, visual 

perception control training was not adaptive. It has been argued (e.g., Shipstead & Engle, 

2012; von Bastian & Oberauer, 2014) that the use of non-adaptive controls potentially 

overestimates transfer effects, because non-adaptive training may be less motivating than 

adaptive training and thus control training participants may expend less training effort. 

However, if this had been the case, transfer effects to all outcome abilities should have been 

observed, not only to spatial episodic memory and reasoning. Moreover, we observed 

comparable achievement motivation during the first training half and, although training 

motivation and valence were more stable in the OLM training group than in the control group, 

no general group differences in these measures and arousal across the entire training period. 

Furthermore, we found large linear performance gains across training sessions in both groups, 

suggesting that the control group expended comparable training effort as the OLM training 

group. Therefore, transfer effects of OLM training were more likely driven by improved 

associative memory processes rather than differences in motivation or training effort.  

A second limitation regarding our transfer results is that we used identical cognitive 

tests across T1-T4. As these tests were administered for three times within nine weeks from 
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T1 to T3, relatively strong retest effects may have obscured possible transfer effects. The 

improvements in spatial and verbal episodic memory performance across the two groups from 

T2 to T3 are probably caused by such retest effects. However, to the best of our knowledge, 

there are no test batteries currently available which include at least three heterogeneous tasks 

for each of the four selected outcome abilities and four parallel versions of these tasks. We 

refrained from constructing such parallel versions because of the complexity of such an 

endeavor, the uncertainty whether demonstrated equality of parallel versions in a calibration 

sample would also be found in the study sample, and the difficulty of achieving an equal 

distribution of the four parallel tasks versions across T1-T4 and the two experimental groups.  

Finally, it is unclear whether OLM training would yield similar positive transfer 

effects in the general population of older adults and whether such effects would produce 

meaningful improvements in everyday cognitive tasks. Our sample was relatively young (60-

75 years), did not suffer from neurological or mental disorders, was highly educated, and had 

slightly above-average cognitive abilities as indicated by the screening tests. However, in 

previous research, age did not consistently predict the magnitude of training and transfer gains 

of process-based working memory or executive functioning training in healthy older adults 

(Karbach & Verhaeghen, 2014). Moreover, training and transfer gains tend to be larger in 

patients with neurological and mental disorders (Weicker, Villringer, & Thöne-Otto, 2016) 

and in healthy older adults with relatively low initial cognitive status (von Bastian & 

Oberauer, 2014). Hence, OLM training may yield even larger training and transfer effects in 

less healthy and cognitively less fit older adults.  

Conclusions 

The present study provides first empirical evidence that process-based training of the 

ability to encode and retrieve associations from long-term memory in healthy older adults can 

induce transfer to untrained episodic memory and reasoning tasks, and that these transfer 



TRANSFER AFTER OBJECT-LOCATION MEMORY TRAINING  41 

effects are largely maintained for four months after training. However, improvements during 

process-based OLM training transferred only to visuo-spatial episodic memory and visuo-

spatial reasoning, but not to verbal episodic memory. This can possibly be explained by the 

following reasons: a) the trained associative memory processes contributed only little to 

performance in the verbal episodic memory tasks which included semantically related verbal 

information, b) functional differences between the ability to remember within-domain 

associations, which is important for verbal episodic memory, and the ability to remember 

between-domain associations, which was practiced in OLM training, or c) transfer of OLM 

training was caused by practice of both associative and visuo-spatial item memory processes. 

Replication studies using larger and less selective samples, and transfer tasks allowing for 

more precise differentiation of the above explanations are needed to determine the long-term 

impact and limitations of process-based training of the ability to encode and retrieve 

associations from long-term memory in healthy older adults. However, taken together, the 

present study offers reason for optimism that such training is a promising novel avenue to 

counteract age-related declines in episodic memory and reasoning.  
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